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Background

The first order conditional estimation (FOCE) method [1] is still one of the parameter estimation workhorses for nonlinear mixed effects (NLME) modeling used in
population pharmacokinetics and pharmacodynamics [2]. We propose a novel implementation of the FOCE and FOCEI methods where instead of obtaining the
gradients needed for the two levels of quasi-Newton optimizations from the standard finite difference approximation, gradients are computed using so called

sensitivity equations [3].

/The Approximate Population Likelihood

The state-space model for a single individual is described by a system of
ordinary differential equations and a corresponding set of measurement

equations
dx; (¢) yij = h(x;5,t5,2;(t;,),0,m;) + €
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where indices i and j denote individuals and observations, respectively.
Furthermore, 0@ are fixed effects parameters, Zl-(tjl.) are covariates,
n;~N(0,Q) are random effect parameters, and R;; are measurement
error covariance matrices.
Given a set of experimental observations, dij , for the individuals
1 =1, ..., N at the time points s where j; = 1, ...n;, we define the
residuals €;; =d;; — ¥,

The approximate log-likelihood function is obtained using the Laplacian
approximation, which involves a second order Taylor expansion wrt n; of
[, around points n;” that maximize the individual ..
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The inner optimization problem consists of finding the n; that maximize
the individual [; (for a given @). Gradient based optimization methods

need accurate gradients. The k" component of the gradient of the log-
likelihood wrt n;
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The sensitivity differential equations wrt n;;
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/ Starting Values for Random Parameters

Using that ;" = n;/(0) is a
function of @ and that we
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Kl'he Outer Optimization Problem \

The outer optimization problem consists of finding the @ that maximizes

the log-likelihood. The mt"* component of the gradient of the log-
likelihood wrt 6

=5 (O L g ey N
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where the total derivatives of [, and H;, wrt @ can be expressed in terms
of solutions to sensitivity differential equations, e.g.,
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The sensitivity differential equations wrt 6,
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* indicates the substitution n; = n;"(0)
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Second order sensitivities are also required: and .
dnixdOm dnikdni

AN

/Precision, Accuracy, and Performance

Two different levels of magnification of an element of the log-likelihood
gradient as a function of the finite difference step, h.
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Benchmarking — relative estimation times

Model M1: 2-compartment,
nonlinear elimination

M1 forward M1 central

S-F- n: Sensitivities (inner),
Finite differences (outer),
improved n starting values

Example: F-F (central diff) to

S-S-n gives 50-fold decreased
computational time /
/" Highlights N

Robust computation of gradients
Methodology applies to both individual and population log-likelihoods
Improves computational speed compared to finite differences /
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