Universität Konstanz

Modeling of delayed phenomena in PKPD by delay differential equations of lifespan type

Gilbert Koch

Department of Mathematics and Statistics, Konstanz, Germany

(Joined work with Prof. J. Schropp)

PAGE 2012 - Venice

Content:

- General mathematical structure of PKPD models
- Transit compartments and lifespan models
- Main theoretical result
- Application to well-known tumor growth model
- Application of delay differential equation to develop an arthritis model
- Opinions to model delayed phenomena and comments to PKPD software

Mathematical structure of a PKPD model

Ordinary Differential Equation (ODE) – Traditional PKPD model

$$x'(t) = f(t, x(t))$$
 $x(0) = x^0$

Delay Differential Equation (DDE)

$$x'(t) = f(t, x(t), \frac{x(t - T)}{t})$$

Delayed information

 $x(s) = \psi(s) \quad -T \le s \le 0$

Modeling of the past necessary

- Delayed state x(t T)
- Explicit delay parameter *T*
- Description of the past

Delay differential equations are **not new** in PKPD \rightarrow Steimer et al 1982

Transit compartments – Traditional approach to describe delays or the lifespan in populations

Schematic representation of a transit compartment model (TCM)

$$\xrightarrow{k_{in}(t)} x_1 \xrightarrow{k} x_2 \xrightarrow{k} \cdots \xrightarrow{k} x_n \xrightarrow{k} x_n$$

TCM with arbitrary initial values:

$$\begin{aligned} x_1'(t) &= k_{in}(t) - k \cdot x_1(t) & x_1(0) = x_1^0 \\ x_2'(t) &= k \cdot x_1(t) - k \cdot x_2(t) & x_2(0) = x_2^0 \\ \vdots & \vdots \\ x_n'(t) &= k \cdot x_{n-1}(t) - k \cdot x_n(t) & x_n(0) = x_n^0 \end{aligned}$$

Mean residence time T = n/k

- x_2, \dots, x_n are delayed versions of $x_1 \rightarrow$ Could be applied to describe delays
- $y_n = x_1 + \dots + x_n$ describes a population (e.g. of cells) with a lifespan T

A general question: How to choose the number *n* of compartments?

Lifespan models (LSM) with constant lifespan T

Schematic representation:

What flows in flows out after T time units!

Lifespan model with constant lifespan T:

$$y'(t) = k_{in}(t) - k_{in}(t - T)$$
 $y(0) = y^0$

Need to supply $k_{in}(s)$ for $-T \le s \le 0$

Application / properties see the works of Krzyzanski , Jusko, Perez-Ruixo,...

Main result - General relationship between transit compartments and lifespan models

$$\begin{array}{c} \underset{k_{in}(t)}{\underbrace{x_{1}}} & \underset{k}{\overset{k}{\longrightarrow}} & \underset{k_{2}}{\underbrace{x_{2}}} & \underset{k_{3}}{\overset{k}{\longrightarrow}} & \underset{k_{n}(t)}{\underbrace{x_{n}}} & \underset{k_{n}(t)}{\overset{k_{n}(t)}{\longrightarrow}} & \underset{k_{in}(t)}{\underbrace{x_{2}}} & \underset{k_{in}(t)}{\overset{k_{n}(t-T)}{\longleftarrow}} & \underset{k_{in}(t-T)}{\underbrace{x_{n}(t-T)}} & \underset{k_{in}(t)}{\underbrace{x_{n}}} & \underset{k_{in}(t)}{\underbrace{x_{n}}} & \underset{k_{in}(t)}{\underbrace{x_{n}}} & \underset{k_{in}(t)}{\underbrace{x_{n}}} & \underset{k_{in}(t-T)}{\underbrace{x_{n}(t-T)}} & \underset{k_{in}(t)}{\underbrace{x_{n}}} & \underset{k_{in}(t)}{\underbrace{x_{n}}} & \underset{k_{in}(t)}{\underbrace{x_{n}}} & \underset{k_{in}(t-T)}{\underbrace{x_{n}(t-T)}} & \underset{k_{in}(t)}{\underbrace{x_{n}}} & \underset{k_{in}(t)}{\underbrace{x_{n}}} & \underset{k_{in}(t)}{\underbrace{x_{n}}} & \underset{k_{in}(t)}{\underbrace{x_{n}}} & \underset{k_{in}(t)}{\underbrace{x_{n}}} & \underset{k_{in}(t)}{\underbrace{x_{n}}} & \underset{k_{in}(t-T)}{\underbrace{x_{n}}} & \underset{k_{in}(t)}{\underbrace{x_{n}}} & \underset{k_{in}(t)}{\underbrace{x_{n}}$$

- The LSM appears as limiting system for the total population of a TCM !
- The TCM for a given *n* is an approximation of the LSM and vice versa !

For mathematical proof see Koch and Schropp (appearing in the next weeks in JPKPD)

Visualization of the main result

LSM: $y'(t) = k_{in}(t) - k_{in}(t - T)$ $y^0 = 0$ $k_{in}(s) = 0, -T \le s \le 0$

TCM:
$$n = 2$$

 $x'_1(t) = k_{in}(t) - kx_1(t)$ $x_1(0) = 0$
 $x'_2(t) = kx_1(t) - kx_2(t)$ $x_2(0) = 0$
 $y_2(t) = x_1(t) + x_2(t)$

TCM: n = 10 $x'_{1}(t) = k_{in}(t) - kx_{1}(t)$ $x_{1}(0) = 0$ \vdots $x'_{10}(t) = kx_{9}(t) - kx_{10}(t)$ $x_{10}(0) = 0$ $y_{10}(t) = x_{1}(t) + ... + x_{10}(t)$

Application to tumor growth model – From TCM to LSM

Situation: The population of attacked tumor cells by a drug has a lifespan. After this lifespan the cells irrevocably die!

General structure of a traditional transit compartment based tumor growth model (see e.g. Simeoni et al 2004)

Formulation with transit compartments: $p'(t) = g(\eta, p(t), d_1(t) + \dots + d_n(t)) - k_{pot} \cdot c(t) \cdot p(t)$ $p(0) = w_0$ $d'_1(t) = \underbrace{k_{pot} \cdot c(t) \cdot p(t) - k \cdot d_1(t)}_{\stackrel{i}{=} k_{in}(t)}$ $d_1(0) = 0$ $d'_2(t) = k \cdot d_1(t) - k \cdot d_2(t)$ \vdots $d'_n(t) = k \cdot d_{n-1}(t) - k \cdot d_n(t)$ $w(t) = p(t) + d_1(t) + \dots + d_n(t)$

Formulation as delay differential equation of lifespan type: $p'(t) = g(\eta, p(t), d(t)) - k_{pot} \cdot c(t) \cdot p(t) \qquad p(0) = w_0$ $d'(t) = k_{pot} \cdot c(t) \cdot p(t) - k_{pot} \cdot c(t - T) \cdot p(t - T)$ $\stackrel{\frown}{=} k_{in}(t) \qquad \stackrel{\frown}{=} k_{in}(t - T)$ w(t) = p(t) + d(t)

Need to provide a past for the outflow in the LSM equation

$$k_{in}(s) = k_{pot} \cdot c(s) \cdot p(s) = 0$$
 for $-T \le s \le 0$

Results for the tumor growth model in TCM and LSM formulation

- Sum of squares of both models are similar for all our experiments (Xenograft mice)
- The amount of parameters is equal for both formulations
- But the lifespan type model has exactly two states instead of n + 1 states
 - One for proliferating cells / One for damaging cells
- Lifespan is directly fitted from the data and not calculated as a secondary parameter

Application of delay differential equations to arthritis for strongly delayed bone destruction

Assumption: The cytokines drive the inflammation and bone destruction in CIA mice

Cytokine:

$$G'(t) = k_3 - e(c(t), \sigma) \cdot G(t) - k(t) \cdot G(t) \qquad G(s) = \exp(bs)$$
$$-T \le s \le 0$$

Inflammation:

$$I'(t) = k_4 \cdot G(t) - k_4 \cdot G(t - T)$$
 $I(0) = I^0$

Bone destruction:

$$D'(t) = k_4 \cdot G(t - T) - k_5 \cdot D(t)$$
 $D(0) = 0$

Delayed development of bone destruction driven by the cytokines!

Optinions to describe delayed phenomena in PKPD

- Delay between PK and PD: \rightarrow Transit/effect compartment
- 2-3 physiological interpretable population stages: → 2-3 Transit compartments
- Unknown physiological population stages: \rightarrow Lifespan type models (LSM)
- Large delayed phenomena: \rightarrow Apply delay differential equations
 - Avoids the use of several unexplainable compartments
 - Direct application of an interpretable delayed state

MATLAB: Internal DDE Solver available - No Problems

ADAPT: Internal DDE Solver from Krzyzanski and Bauer will be soon available at BMSR website

NONMEM (Fortran based): In principle possible! (see Perez-Ruixo et al 2005)

MONOLIX (MATLAB based): In principle possible!

Wish and Call to NONMEM/MONOLIX developer: Please include a numerical DDE solver in PKPD software !

Conclusion

• <u>Main result</u>: The sum of transit compartments is an approximation of the lifespan model

• In general delay differential equations could be used to describe lifespans of cell populations (e.g. dying tumor cells) and strongly delayed phenomena (see e.g. bone destruction in arthritis)

• DDEs avoid the use of unnecessary help differential equations whose states are not really interpretable

Thank you !

Contact:

gilbert.koch@uni-konstanz.de