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Ordinary Differential Equation (ODE) – Traditional PKPD model 

Delay Differential Equation (DDE) 

Modeling of the past 
necessary 

Delayed information 

Mathematical structure of a PKPD model 

Delay differential equations are not new in PKPD  Steimer et al 1982 

• Delayed state 𝑥(𝑡 − 𝑇) 
• Explicit delay parameter 𝑇   
• Description of the past 

𝑥′ 𝑡 = 𝑓 𝑡, 𝑥 𝑡 , 𝑥 𝑡 − 𝑇  

𝑥′ 𝑡 = 𝑓 𝑡, 𝑥 𝑡  𝑥 0 = 𝑥0 

𝑥 𝑠 = 𝜓 𝑠     − 𝑇 ≤ 𝑠 ≤ 0 



Transit compartments – Traditional approach to describe delays 
or the lifespan in populations 

A general question: How to choose the number 𝒏 of compartments? 

Mean residence time 𝑇 = 𝑛
𝑘  

Schematic representation of a transit compartment model (TCM) 

𝑘𝑖𝑛(𝑡) 𝑘 𝑘 𝑘 𝑘 
𝑥1 𝑥2 𝑥𝑛 

TCM with arbitrary initial values: 

𝑥1
′ 𝑡 = 𝑘𝑖𝑛 𝑡 − 𝑘 ⋅ 𝑥1(𝑡) 

𝑥2
′ 𝑡 = 𝑘 ⋅ 𝑥1(𝑡) − 𝑘 ⋅ 𝑥2(𝑡) 

𝑥𝑛
′ 𝑡 = 𝑘 ⋅ 𝑥𝑛−1(𝑡) − 𝑘 ⋅ 𝑥𝑛(𝑡) 

𝑥1 0 = 𝑥1
0 

𝑥2 0 = 𝑥2
0 

𝑥𝑛 0 = 𝑥𝑛
0 

⋮ ⋮ 

•  𝑥2, … , 𝑥𝑛 are delayed versions of 𝑥1  Could be applied to describe delays 
•  𝑦𝑛 = 𝑥1 +⋯+ 𝑥𝑛 describes a population (e.g. of cells) with a lifespan 𝑇 



Lifespan models (LSM) with constant lifespan T 

Lifespan model with constant lifespan T: 

Need to supply 𝑘𝑖𝑛 𝑠  for −𝑇 ≤ 𝑠 ≤ 0 

Application / properties see the works of Krzyzanski , Jusko, Perez-Ruixo,…  

Schematic representation: 

𝑦′ 𝑡 = 𝑘𝑖𝑛 𝑡 − 𝑘𝑖𝑛 𝑡 − 𝑇          𝑦 0 = 𝑦0 

𝑘𝑖𝑛(𝑡) 𝑘𝑜𝑢𝑡 𝑡 = 𝑘𝑖𝑛(𝑡 − 𝑇) 
𝑦 

What flows in flows out after 𝑇 time units! 



Main result - General relationship between transit 
compartments and lifespan models 

For mathematical proof see Koch and Schropp (appearing in the next weeks 
in JPKPD) 

Arbitrary 
initial values 

Let 𝑇 be fixed. Then for 𝑛 → ∞  

Consider the total population:  

Corresponding 
past 

𝑦𝑛 𝑡 = 𝑥1 𝑡 + ⋯+ 𝑥𝑛(𝑡) 

𝑘𝑖𝑛(𝑡) 𝑘 𝑘 𝑘 𝑘 
𝑥1 𝑥2 𝑥𝑛 

• The LSM appears as limiting system for the total population of a TCM ! 
• The TCM for a given 𝒏 is an approximation of the LSM and vice versa ! 

𝑦 
𝑘𝑖𝑛(𝑡) 𝑘𝑖𝑛(𝑡 − 𝑇) 



Visualization of the main result 

𝑦′ 𝑡 = 𝑘𝑖𝑛 𝑡 − 𝑘𝑖𝑛 𝑡 − 𝑇       𝑦0 = 0 

𝑘𝑖𝑛 𝑠 = 0 , −𝑇 ≤ 𝑠 ≤ 0 

𝑥1
′ 𝑡 = 𝑘𝑖𝑛 𝑡 − 𝑘𝑥1 𝑡       𝑥1 0 = 0 

𝑥2
′ 𝑡 = 𝑘𝑥1 𝑡 − 𝑘𝑥2 𝑡      𝑥2 0 = 0 

𝑦2 𝑡 = 𝑥1 𝑡 + 𝑥2(𝑡) 

 𝑥1
′ 𝑡 = 𝑘𝑖𝑛 𝑡 − 𝑘𝑥1 𝑡          𝑥1 0 = 0 

                  ⋮     
𝑥10
′ 𝑡 = 𝑘𝑥9 𝑡 − 𝑘𝑥10 𝑡      𝑥10 0 = 0 

𝑦10 𝑡 = 𝑥1 𝑡 + …+ 𝑥10 (𝑡) 

LSM: 

TCM: 𝑛 = 2 

TCM: 𝑛 = 10 



Application to tumor growth model – From TCM to LSM 

Damaging  
Stage 1 

Damaging  
Stage n 

Proliferating 
Cells 

PK 

 Cell  
Death 

)(tp )(1 td )(tdn

Damaging  
Stage 

Proliferating 
Cells 

PK 

 Cell  
Death 

)(tp )(td

k k k

T

Transit compartments  

Situation: The population of attacked tumor cells by a drug has a lifespan. After 
this lifespan the cells irrevocably die! 

General structure of a traditional transit compartment based tumor growth  

model (see e.g. Simeoni et al 2004) 

Applying our result ! 

𝑑 𝑡 = 𝑑1 𝑡 + ⋯+ 𝑑𝑛(𝑡) 



Application to tumor growth – From TCM to LSM - In formulae 

TCM 

Formulation with transit compartments: 

𝑝′ 𝑡 = 𝑔 𝜂, 𝑝 𝑡 , 𝑑1 𝑡 + ⋯+ 𝑑𝑛 𝑡 − 𝑘𝑝𝑜𝑡 ⋅ 𝑐 𝑡 ⋅ 𝑝(𝑡) 

𝑑1
′ 𝑡 = 𝑘𝑝𝑜𝑡 ⋅ 𝑐 𝑡 ⋅ 𝑝 𝑡 − 𝑘 ⋅ 𝑑1(𝑡) 

𝑑2
′ 𝑡 = 𝑘 ⋅ 𝑑1 𝑡 − 𝑘 ⋅ 𝑑2(𝑡) 

𝑑𝑛
′ 𝑡 = 𝑘 ⋅ 𝑑𝑛−1 𝑡 − 𝑘 ⋅ 𝑑𝑛(𝑡) 

𝑤 𝑡 = 𝑝 𝑡 + 𝑑1 𝑡 + ⋯+ 𝑑𝑛(𝑡) 

𝑝 0 = 𝑤0 

𝑑1 0 = 0 

𝑑2 0 = 0 

𝑑𝑛 0 = 0 

Formulation as delay differential equation of lifespan type: 
𝑝′ 𝑡 = 𝑔 𝜂, 𝑝 𝑡 , 𝑑 𝑡 − 𝑘𝑝𝑜𝑡 ⋅ 𝑐 𝑡 ⋅ 𝑝 𝑡  𝑝 0 = 𝑤0 

𝑑′(𝑡) = 𝑘𝑝𝑜𝑡 ⋅ 𝑐 𝑡 ⋅ 𝑝 𝑡 − 𝑘𝑝𝑜𝑡  ⋅ 𝑐 𝑡 − 𝑇 ⋅ 𝑝(𝑡 − 𝑇) 𝑑 0 = 0 LSM 

𝑤 𝑡 = 𝑝 𝑡 + 𝑑(𝑡) 

⋮ 
⋮ 

Need to provide a past for the outflow in the LSM equation  

𝑘𝑖𝑛 𝑠 = 𝑘𝑝𝑜𝑡  ⋅ 𝑐 𝑠 ⋅ 𝑝 𝑠 = 0 for −𝑇 ≤ 𝑠 ≤ 0 

= 𝑘𝑖𝑛(𝑡) 

= 𝑘𝑖𝑛(𝑡) = 𝑘𝑖𝑛(𝑡 − 𝑇) 



Results for the tumor growth model in TCM and LSM 

formulation  

• Sum of squares of both models are similar for all our experiments (Xenograft mice) 

• The amount of parameters is equal for both formulations 

• But the lifespan type model has exactly two states instead of 𝑛 + 1 states 

• One for proliferating cells / One for damaging cells 

• Lifespan is directly fitted from the data and not calculated as a secondary parameter 

LSM type TCM type n=3 



Application of delay differential equations to arthritis for 
strongly delayed bone destruction 

Delayed development of bone 
destruction driven by the cytokines! 

Cytokine: 

Inflammation: 

Bone 
destruction: 

Assumption: The cytokines drive the inflammation and bone destruction in   
                        CIA mice  

𝐼′ 𝑡 = 𝑘4  ⋅ 𝐺 𝑡 − 𝑘4 ⋅ 𝐺(𝑡 − 𝑇) 

𝐷′ 𝑡 = 𝑘4  ⋅ 𝐺 𝑡 − 𝑇 − 𝑘5 ⋅ 𝐷(𝑡) 

𝐺′ 𝑡 = 𝑘3  − 𝑒 𝑐 𝑡 , 𝜎 ⋅ 𝐺 𝑡 − 𝑘 𝑡 ⋅ 𝐺(𝑡) 𝐺 𝑠 = exp(𝑏𝑠) 

−𝑇 ≤ 𝑠 ≤ 0 

𝐼 0 = 𝐼0 

D 0 = 0 



Optinions to describe delayed phenomena in PKPD 

• Delay between PK and PD:  Transit/effect compartment 
 
• 2-3 physiological interpretable population stages:  2-3 Transit 

compartments 
 
• Unknown physiological population stages:  Lifespan type models (LSM) 
 
• Large delayed phenomena:  Apply delay differential equations 

• Avoids the use of several unexplainable compartments  
• Direct application of an interpretable delayed state 



PKPD Software and DDEs 

MATLAB: Internal DDE Solver available - No Problems 

 
ADAPT: Internal DDE Solver from Krzyzanski and Bauer will be soon available at 
BMSR website   
 
NONMEM (Fortran based): In principle possible! (see Perez-Ruixo et al 2005) 
 
MONOLIX (MATLAB based): In principle possible! 

Wish and Call to NONMEM/MONOLIX developer:  
Please include a numerical DDE solver in PKPD software ! 



Conclusion 

• Main result: The sum of transit compartments is an approximation of the 
lifespan model  

• In general delay differential equations could be used to describe lifespans of 
cell populations (e.g. dying tumor cells) and strongly delayed phenomena 
(see e.g. bone destruction in arthritis) 

• DDEs avoid the use of unnecessary help differential equations whose states 
are not really  interpretable 

 
 



Thank you ! 

Contact:   

gilbert.koch@uni-konstanz.de 
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