
PK of acetaminophen and its metabolites in preterm 

and term neonates using relevant external background 

information in a Bayesian approach with Stan 

Objectives  
• Optimize IV dosing of acetaminophen (APAP) in neonates, who have a rapidly 

changing metabolism impacting population pharmacokinetics (PK) [1] 

• Different maturation processes have a competing impact on important PK 

metrics such as half-life, clearances and volumes 

• The main challenge was to incorporate the extensive external knowledge 

[1,2,4] from the literature in the model to allow for an adequate description of 

relevant maturation processes, despite the very sparse data from IV infusions 

of APAP which was collected. 

• Furthermore, no urine excretion data nor IV administered metabolites 

experiments were available leading to non-identifiability of formation rates or 

metabolite volumes. 

 

Methods 
A one-cmt model for APAP with the two main metabolites APAPgluc & APAPsulf 

were fit in a Bayesian approach using Stan [3]. The Stan program developed was 

designed to process NONMEM formatted datasets to facilitate rapid analysis. 

 

Background Information & Parametrization 
• Allometric ‘1/4’ power scaling to relate to adult estimates 

• Use reference time-point of post menstrual age (pma)=34 weeks, i.e. use 

maturation function [4] 

𝜋34 = matGFR 𝑝𝑚𝑎 = 34 = 0.24 

• Organ maturation: locally describe pma-changes via exponentials in pma with 

intercept at reference time-point pma=34weeks 

• Glomerular filtration rate (GFR) increase 

• Glucuronidation increase (implicit total clearance increase) 

• Central volume decrease 

• Increase in elimination rate of APAPgluc & APAPsulf 

• Simultaneous fit of GFR as function of pma with PK model provides GFR 

maturation rate as prior for all required growth rates 

GFR𝑗(𝑝𝑚𝑎𝑗) = GFRref 𝜋34 exp(𝜆GFR (𝑝𝑚𝑎𝑗 − 34)) 

• Parametrization chosen to mirror current literature knowledge 

• Total fraction of metabolites known to be ~90% in adults 

𝐶𝑙tot,j =
𝐶𝑙APAP,G,j + 𝐶𝑙APAP,S,j

𝜋G+S
 

logit(𝜋G+S) ∼ (logit(0.85), logit(0.95))95 

• Elimination of metabolites via the kidney which matures, 

adult ~7.2 l/h/70kg 

𝐶𝑙G,j = 𝐶𝑙G,ref 𝜋34  
𝑤𝑗
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 exp 𝜆GFR  𝑝𝑚𝑎𝑗 − 34  

log𝐶𝑙G,ref ∼ (log(5), log(10))95 

• Growth rates in relation to GFR maturation, 

i.e. for formation of G 

𝐶𝑙APAP,G,j = 𝐶𝑙APAP,G,ref 𝜋34  
𝑤𝑗
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exp 𝜆G  𝑝𝑚𝑎𝑗 − 34  

𝜆G =
log 2

𝑇2,G
 

𝑇2,G = 𝑇2,GFR 𝛿G 

𝛿G ∼ LogNormal(0, log(5)/1.96) 
• Use of informative priors on random effects, i.e. 

𝜔V,APAP ∼ LogNormal(log(0.2), log(1.5)/1.96) 
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Conclusions 
Using a Bayesian approach we were able to interpret the sparse data set using 

relevant background knowledge 

• Allometric ‘1/4’ power scaling & organ maturation was used to relate adult 

knowledge to pma=34 weeks reference time-points 

• Organ maturation was described using pma. Results: 

• A rapidly changing metabolism, i.e. a fast increase in G/S ratio 

• Overall increase in half-lives from pma=40 to pma=35 

• Given the total evidence, half-lives for pma<35 are yet uncertain but appear 

to remain constant 

• Using the known renal elimination clearance of the metabolites enabled 

estimation of metabolite cmt volumes 

• The analysis was conducted using Stan [3] with NONMEM input data sets 

which facilitates rapid analysis. Computation times were ~30min using an 

analytic solution. 
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  mean se_mean sd 2.5% 97.5% n_eff Rhat 
CL[1] 17.08 0.04 0.75 15.68 18.68 333.22 1.00 
CL[2] 8.15 0.05 1.13 5.99 10.57 586.28 1.00 
CL[3] 7.02 0.04 0.61 5.92 8.24 255.76 1.01 
CL_M[2] 2.62 0.02 0.39 1.91 3.40 481.00 1.00 
CL_M[3] 12.86 0.04 0.91 11.10 14.65 444.07 1.00 
V[1] 78.19 0.19 4.29 70.18 86.68 518.08 1.00 
V[2] 49.51 0.36 7.86 35.78 65.80 479.01 1.00 
V[3] 28.46 0.06 1.94 24.75 32.26 1000.00 1.00 

Clearance [l/h/70kg], formation clearance [l/h/70kg] and volume 

[l/70kg] of a typical neonate (pma=34 weeks), CL&V: 1=APAP, 

2=APAPgluc, 3=APAPsulf; CL_M: 2=APAP,G, 3=APAP,S 

 

Upper left: Organ maturation quickly 

changes the G/S ratio which is 2:1 in adults. 

Upper right: Population mean of half-lives 

of APAP with pma weight correction. 

Uncertainty for pma<35 considerable, model 

suggests a constant half-life for early pma. 

Half-live decreases slowly for pma>35. 

Right: Total clearance, formation clearance 

of sulfation & glucuronidation 

Estimates 

Study design 
30min IV infusions of APAP 

GA<28 (10): 5x 15mg/kg/12h 

GA≥28 (25): 7x 15mg/kg/8h 

Left: Washout phase for the 

parent, G & S metabolites. 

Color codes correspond to 

pma at baseline and group 

the patients in very early, 

early preterm & term 

neonates. Shown are the 

individual mean estimates 

with their 95% credible 

interval in grey. Key results: 

• G concentration much 

lower for preterms due to 

immature APAP G 

formation 

• Early preterm show 

increased APAP half-life 

(separation of green & 

blue), but very early 

preterm show large 

variability 


