Clinical trial simulations using a stroke disease progression model

Kristin E Karlsson1, Mats O Karlsson1 and E Niclas Jonsson1,2
1. Department of Pharmaceutical Biosciences, Uppsala University, Sweden; 2. Exprimo NV, Mechelen, Belgium

Objective

To perform clinical trial simulations to calculate the power to detect a drug effect different from zero, using a disease progression model for NIH stroke scale (NIHSS) [1], and to assess the bias and precision of the drug parameter, under various conditions.

Background

- Combined categorical-continuous models such as the stroke disease progression models [1-3] are of particular use where the data is non-monotonic, which is a typical scenario when analyzing stroke scale data. Maximal use is made of the available information, and even missing observations can be informative. These models may provide significant advantages over current analytical methodology used in the interpretation of the score data routinely collected during stroke trials.

Methods

- To be able to perform clinical trial simulations a drug effect parameter had to be introduced in the NIHSS disease progression model. Due to the structure of the model, several options on where to introduce a drug parameter were available; probability of improvement, probability of max score, probability of dropout, magnitude of improvement and magnitude of decline. In this scenario the effect was only added linearly on the magnitude of improvement.
- The design of the study was a parallel study with four arms; placebo and three active doses. Observations were made at day 0, 7, 30 and 90, and the study size was varied between 15-200 patients per arm.

Results

- Under the studied conditions, and using the model for hypothesis testing, a minimum of 50 patients per arm was required to reach a study power of 80%.
- The drug parameter was estimated with high precision and a slight negative bias.
- The % fully recovered patients was estimated with high precision and a small bias.
- The results confirm the usefulness of a model based approach in the therapeutic area of stroke.

Conclusions

A continuous power curve (figure 2), produced by the MCMP method [5], showed that 50 patients per arm was the minimum for obtaining an 80% statistical power to detect a drug effect different from zero. The behaviour of the drug parameter was investigated by calculating precision and bias, the former was high while the latter resulted in a consistent under prediction of an average of 15%.

References