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Background and motivation 
 

 

The stochastic mixed-effects framework 
 

Highlights 
 Combination of SDEs and mixed-effects models 
 The framework allows for three source of variation in data 
 Highly efficient gradient calculation using sensitivities 
 Improved individual model fits for the NiAc data  
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Mixed-Effects Modeling Using Stochastic 
Differential Equations – Application to 
Pharmacokinetic Modeling 

Parameter estimation  

𝑑𝑥𝑖 = 𝑓 𝑥𝑖 , 𝑢𝑖 , 𝜙𝑖 𝑑𝑡 + 𝜎𝑑𝑊,     𝑥𝑖 0 = 𝑥0(𝜙𝑖) 

𝑦𝑖𝑗 = ℎ 𝑥𝑖 , 𝑢𝑖 , 𝜙𝑖 + 𝑒𝑖𝑗  

Nonlinear mixed-effects modeling is a popular tool for studying variability within and between individuals of a population. We have extended the ordinary 
differential equation setting commonly used in nonlinear mixed-effects models to include stochastic differential equations. The new approach is used to account 
for model misspecification and uncertainty in the underlying dynamics. The framework is applied to a pharmacokinetic model of nicotinic acid. 

𝜙𝑖 = 𝑔 𝜃, 𝑍𝑖 , 𝜂𝑖  

Stochastic NiAc disposition in obese 

Zucker rats 
 

Fitted population model 
 

𝐴𝑃𝐿 𝜃 =  𝑙𝑖 𝜂𝑖
∗ −

1

2
log 

−Δ𝑙𝑖 𝜂𝑖
∗

2𝜋
𝑁
𝑖=1 , 

Δ𝑙𝑖 ≈ − 
𝜕𝜀

𝜕𝜂

𝑇
𝑅𝑖𝑗
−1 𝜕𝜀

𝜕𝜂
− Ω−1

𝑛𝑖
𝑗=1 . 

𝑙𝑖 = −
1

2
 (𝜖𝑖𝑗

𝑇𝑅𝑖𝑗
−1𝜖𝑖𝑗 + log |2𝜋𝑅𝑖𝑗|)

𝑛𝑖
𝑗=1 −

1

2
𝜂𝑖
𝑇Ω−1𝜂𝑖 −

1

2
log 2𝜋Ω . 

where the Hessian matrix is approximated using first-order terms only 

The individual likelihood is given by 

To evaluate the APL, we first need to determine the residual vector 
and output covariance matrix at all measurements points for each 
individual. The Extended Kalman Filter (EKF) is a suitable choice to 
process the data [1], which is applicable also to nonlinear models. 
Gradients are computed using sensitivity equations. 

Fitted individual models 
 ODEs 

 
SDEs 

 

Parameters are estimated by maximizing the population likelihood 
function. It is approximated using the so called first order conditional 
estimation method (FOCE). The expression for the approximate 
population likelihood (APL) is given by 

The state-space model for a single individual is described by a 
system of stochastic differential equations depending on some input 
𝑢𝑖  and individual parameters 𝜙𝑖   

together with a measurement equation  

where index 𝑖  and 𝑗  denote individuals and observations, 
respectively. In a mixed-effects model the individual parameters are 
assumed to be described by the functional relationship 

𝜃- fixed effects 

𝑍𝑖- covariates 

𝜂𝑖- random effects 

𝑒𝑖𝑗~𝑁(0, 𝑆) 

𝜂𝑖~𝑁(0, Ω) 

𝑉𝑐 𝑑𝑐𝑖 = 𝑢 + 𝑆𝑦𝑛𝑡 −
𝑉𝑚𝑖𝑐𝑖
𝐾𝑚 + 𝑐𝑖

𝑑𝑡 + 𝜎𝑐𝑖 𝑑𝑊 

𝑦𝑖𝑘 = 𝑐 𝑡𝑖𝑘 + 𝜖𝑖𝑘 

𝑉𝑐 – Compartment volume 
𝑆𝑦𝑛𝑡 – Synthesis rate 
𝑉𝑚 – Maximal rate 
𝐾𝑚 – MM-constant 
𝜎 – System noise factor 
𝑠 – Measurement var. 
 

We have applied the stochastic mixed-effects framework to model 
the pharmacokinetics (PK) of nicotinic acid in obese rats. The 
stochastic PK model is an extension of a previously published 
deterministic model [2]. 
 
We model the pharmacokinetics by a one-compartment model with 
constant synthesis and nonlinear elimination of nicotinic acid. We are 
interested in identifying the 7 parameters 𝑉𝑐, 𝑆𝑦𝑛𝑡, 𝑉𝑚, 𝐾𝑚, 𝑠, 𝜔𝑉𝑚 
and 𝜎. We assume 𝑉𝑚𝑖~𝐿𝑁 𝑉𝑚, 𝜔𝑉𝑚

2 . 

𝜖𝑖𝑘~𝑁(0, 𝑐 𝑡𝑖𝑘 ∗ 𝑠) 

Using the stochastic mixed-effects model approach, we are able to 
explain three sources of variation: measurement error, model 
uncertainty and population variability. 

20 𝜇mol/kg over 30 min  

 
51 𝜇mol/kg over 300 min  

 

Parameter estimates (RSE %) 
𝑉𝑐 – 0.32 (5.5) 
𝑆𝑦𝑛𝑡 – 0.0018 (24.3) 
𝑉𝑚 – 1.35 (16.7) 
 

𝐾𝑚 – 13.6 (21.5) 
𝑠 – 0.058 (23.5) 
𝜎 – 0.033 (15.7) 
 

𝜔𝑉𝑚 – 0.13 (27.0)  
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