
Mechanistic mathematical modeling of  
body composition and energy turnover 

 

Introduction 

Studies of drugs related to appetite, metabolism, and energy expenditure often 

require rigorous monitoring of food intake, body weight and sometimes energy 

expenditure. Obviously, such studies are laborious to administrate and costly. We 

explore how mechanistic dynamic mathematical models of energy balances and 

body composition can improve the study design and analysis of such experiments.  

Peter Gennemark, AstraZeneca R&D, Mölndal Sweden 

 
 

The model class 
We consider a class of ordinary differential equations (ODEs) models that are based 

on the law of energy conservation and explicitly connected to physiological variables 

(1-4). Together, this ensures that biophysical constraints are satisfied and facilitates 

potential extension of the scope of the models. Key model based predictions include 

time series of fat mass (FM), lean mass (LM), extra-cellular fluid (ECF), BW, fat mass 

(FM), EI and EE. Individual models within this class of models mainly differ in the 

level of resolution at which the system is modeled, see Table 1. 
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where ρFM = 9400 kcal/kg and ρLM = 1800 kcal/kg are energy densities, ΔNadiet is the change on 

sodium in mg/d from baseline, CIb is the baseline carbohydrate intake, [Na] is extra-cellular 

sodium concentration, ξNa and ξCI are empirically determined constants, and ρw is the density of 

water. An empirical relationship, referred to as a Forbes curve, relates dFM to dLM. EI is taken 

from data if available, or alternatively, estimated based on typical feeding habits. EE can be 

estimated from empirical equations or modeled as 
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where β  is a coefficient for the thermic effect of feeding, δ a physical activity coefficient, γ and η 

are coefficients for the resting metabolic rate, and K ensures an initial steady-state. 

Inference of EI using BW data  

Observing EI is considerably more expensive than BW monitoring, and inference of 

EI from BW data is therefore valuable. Since models are represented by ODEs that 

are non-linear in the parameters, and since input data is incomplete, deconvolution 

methodologies designed for sparsely observed non-linear systems are required. In 

general, this problem can be defined by the following components: 1) available time-

series data; 2) a model space representing the prior information of the input signal 

(e.g., feasible input model structures, parameter ranges and/or constraints); and 3) 

an error function that measures the feasibility of each tested model from the model 

space and works as a model selection criterion (e.g., AIC or cross-validation 

approaches). Together, these three components form an optimization problem – to 

optimize the error function over the model space given available data.  
 

In practice, structural model identification problems of these types are very hard: 

representation of the model space is nontrivial, the size of the model space may be 

too large to allow an exhaustive search, and observing only few state variables 

makes structural identifiability a major issue. Therefore, a pragmatic approach is to 

apply non-parametric methods where a fixed structure of the input model is not 

assumed. To illustrate this, let some typical time-series BW data be represented by a 

smoothing spline function (spaps, Matlab), see Figure 2. EE is assumed unobserved 

but modeled as described in Box 1 with parameters taken from the literature. Then, 

EI can be identified non-parametrically by integrating the ODEs by Euler steps 

verifying at each step that simulated BW matches the smoothed BW data. Integration 

accuracy and precision is guaranteed by choosing sufficiently small step length. The 

resulting EI time series are depicted in Figure 2. 
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Naturally, the curvature but not the integral of the EI predictions is dependent on the 

curvature of the corresponding BW time-series data, and hence also on the choice of 

smoothing parameter. To validate the model alternative additional experiments may 

include body fat measures (e.g., by dual-energy x-ray absorptiometry). 
 

An integrative PKPD modeling approach 
In drug discovery/development, a natural extension is to connect the considered 

model class with PK of related drugs. Observations or predictions of EI and/or EE are 

then of major importance in order to identify a reasonable drug induced effect model 

based on the mechanism of action. Main advantages of a complete model include 

simulation of various dosing schedules, extrapolation over time, and improved 

understanding of the mechanism of action (drug targeting EI and/or EE). Concerning 

the latter, the main assumption in the analysis presented in Figure 2 is that treatment 

does not affect EE. However, the predicted EI depicted in black (Figure 2) exhibits 

negative values initially, something that may indicate an effect on EE. Another 

plausible explanation is an initially increased fecal elimination rate. Should the 

treatment affect EE, additional data in form of EI can help distinguish the effect on 

appetite from the effect on EE and in that way unraveling the mechanism of action. 
 

Experimental design 
Taken together, a framework containing the model class in Table 1, approaches for 

model selection and deconvolution, and integrative PKPD aspects enables new 

ways of analyzing experimental designs in the obesity area. As an example, a key 

question is how well a model can predict body weight change after a given period of 

time given data for an initial part of that period, when certain variables are observed. 

Since scenarios with no or only minor unmonitored drug tolerance development 

gives best predictions, proper translation of preclinical observations regarding 

tolerance is important.   
 

Conclusions 
Mechanistic mathematical models can describe the relationship between EI, EE, and 

BW. Deconvolution can be used to predict unobserved variables. Key advantages of 

a mechanistic model based analysis include improved understanding of the system 

dynamics, improved ability to predict beyond the data ranges, and potential to 

significantly improve the experimental design by reducing the study length. For the 

latter, the risk of tolerance development must be assessed. 
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BOX 1 

The body weight (BW) is obtained as 

Key processes are represented by the following equations: 

TABLE 1. Overview of common models. PM=protein mass, GM=glucogen mass. 

Species Number of ODEs Key variables Reference 

Human 2 LM, FM 1 

Human 3 LM, FM, ECF 2 

Human 8 PM, GM, FM, ECF 3 

Mouse 2 LM, FM 4 

To exemplify, the moderately complex model proposed in (2) is detailed in Box 1. 

Model selection 
It is common that one system is modeled at different levels of resolution as the 

models in Table 1. The choice is typically based on the amount and quality of 

available data, prior information of the system, and the research question in focus. 

Hence, advantages and limitations of the different models in Table 1 are partly 

context dependent. In general, compared to a simple model, a more complex model 

enables more precise predictions but must be inferred from more reliable data 

(amount and/or quality). 
 

Similar to the conclusion drawn in (2), our experience indicates that the simpler 

model presented in (1) is inferior (mainly with respect to flexibility) to the model 

presented in (2) when both EI and BW are observed. The choice between the 

models presented in (2) and (3) depends on what observations are available among 

the system variables present in the latter but not in the former. Furthermore, when 

modeling drug treatment data, inclusion of variables involved in the mechanism of 

action is natural.  
 

A fundamental requirement of the models is flexibility to fit data generated for both EI 

and BW. Under- or overfitting of noisy body weight time profiles and uncertainty in 

empirical based estimation of energy expenditure are major issues. For application 

of any of the models in Table 1, choosing free parameters is central. Some general 

guidance is that sensitivity of parameters related to unobserved variables generally 

is high, i.e., it is natural to keep δ free when EE is unobserved (Box 1). Furthermore, 

the baseline EI before the study (affecting ΔNadiet and CIb) is hard to infer empirically, 

and initial values for, e.g., FM and ECF, can be constrained around initial guesses 

from empirical equations (2).  

We consider the following general 

problem (Figure 1): Given energy 

intake (EI), and/or energy 

expenditure (EE) and /or body weight 

(BW) time series data, how to best 

quantitatively model the relationship 

between these variables and how to 

infer potential unobserved variables 

as well as system parameters? 

Figure 2. Left: BW time-series data (circles) and smoothed curves (lines) from rodent models exposed 

to various diets or drugs affecting appetite. Right: inferred EI time courses using the model from (4). 

Figure 1. System overview. 
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