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Introduction and Objective

Delay differential equations (DDEs) are a growing tool to model delays
(e.g. strongly delayed response) or lifespans (e.g. maturation processes in
populations) in pharmacokinetics/pharmacodynamics (PKPD) [1]. In contrast
to its ordinary differential equation (ODE) counterpart, a DDE describes a
delay or lifespan with an explicit delay parameter T in the argument of the
state. Currently, DDEs could not be directly solved in NONMEM. However,
we identified a sub-class of DDEs, calling them Semi-DDEs, which often
appear in PKPD modeling [1]. These Semi-DDEs could be rewritten by two
systems of ODEs, one system for the time before the delay T and one for
time after T . Applying the ALAG command and a case-by-case analysis,
Semi-DDEs could be solved with NONMEM.

Delay Differential Equations:
The general form of a DDE with a single delay T > 0 reads

d

dt
x(t) = f (t, x(t), x(t− T )) , x(t) = x0(t) for t ≤ 0 . (1)

In contrast to ODEs, where T = 0, the mechanism f additionally depends on
the delayed state x(t− T ) and we have an initial function x0(t) describing the
past −T ≤ t ≤ 0 instead of an initial value at t = 0.

Semi-Delay Differential Equations:
We identified an important sub-class of DDEs, calling them Semi-DDEs in
[1]. The general structure of a Semi-DDE with a single delay T > 0 reads

d

dt
u(t) = g(t, u(t)) , u(t) = u0(t) for t ≤ 0 (2)

d

dt
v(t) = h(t, u(t), u(t− T ), v(t)) , v(0) = v0 . (3)

Here the mechanism g does not depend on v and its delayed state u(t − T ).
However, u(t− T ) is used to describe the mechanism h for v(t) and therefore
a past for u(t) is necessary. Note that v(t) has no past but an initial value.

Method
General method to rewrite a Semi-DDE (2)-(3) to a system of two ODEs:
Step 1: 0 ≤ t ≤ T

Substituting the explicitly initial function u0 for the delayed state u(t − T )

gives the ODE

d

dt
u(t) = g(t, u(t)) , u(0) = u0(0) (4)

d

dt
v(t) = h(t, u(t), u0(t− T ), v(t)) , v(0) = v0 (5)

d

dt
z(t) = 0 , u(0) = u0(0) (6)

where Eq. (6) is a place holder for the upcoming delayed version of Eq. (4).
Step 2: t ≥ T

Duplicate Eq. (4), where z now describes the state of u before t−T time units,
i.e. z(t) = u(t − T ). We denote by (uT , vT ) the value of u(t) and v(t) at time
point T . Then the second ODE reads

d

dt
u(t) = g(t, u(t)) , u(T ) = uT (7)

d

dt
v(t) = h(t, u(t), z(t), v(t)) , v(T ) = vT (8)

d

dt
z(t) = g(t− T, z(t)) , z(T ) = u0(0) . (9)

Note that there are no more delayed states in the right hand side of Eqs. (7)-(9).
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Application / Results
In CIA mice increased GM-CSF G(t) is inhibited by a drug c(t). A total arthritic score (TAS)

R1(t), an overall description of inflammation I(t) and bone destruction D(t), and a pure bone

destruction score (AKS) R2(t) were measured. The visibility of bone destruction is strongly

delayed due to first signs of inflammation. This delay is described by an explicit delay

parameter T > 0. Further it is assumed, that cytokine overproduction starts earlier before the

mouse visibly develops inflammation, modeled by an initial function.

The rheumatoid arthritis (RA) model in DDE formulation [1] reads

d

dt
c(t) = −kelc(t) c(0) =

dose

V
(10)

d

dt
G(t) = k3 −

k1
k2

(1− exp(−k2t))G(t)− Emaxc(t)

EC50 + c(t)
G(t) ,

G(t) = a exp(bt) for − T ≤ t ≤ 0 (11)
d

dt
I(t) = k4G(t)− k4G(t− T ) , I(0) = I0 (12)

d

dt
D(t) = k4G(t− T )− k5D(t) , D(0) = 0 (13)

where R1(t) = I(t) +D(t) is the TAS and R2(t) = D(t) the AKS.
NONMEM implementation of the ODE formulation of Eqs. (10)-(13):
$DES
c = A(1)/V
cdel = A(2)/V
eff = (Emax*c)/(EC50+c)
effdel = (Emax*cdel)/(EC50+cdel)
DADT(1) = -kel*A(1)
DADT(2) = -kel*A(2)
DADT(3) = k3 - eff*A(3) - (k1/k2)*(1-exp(-k2*t))*A(3)
if (t .LE. Tlag) then

DADT(4) = k4*A(3) - k4*aa*exp(bb*(t-Tlag))
DADT(5) = k4*aa*exp(bb*(t-Tlag)) - k5*A(5)
DADT(6) = 0

else
DADT(4) = k4*A(3) - k4*A(6)
DADT(5) = k4*A(6) - k5*A(5)
DADT(6) = k3 - effdel*A(6)

- (k1/k2)*(1-exp(-k2*(t-Tlag)))*A(6)
endif
where Tlag = T , aa = a and bb = b.

Remark: For 0 ≤ t ≤ T the delay appears in the substituted initial
function. For t > T the delay is in the PK. Therefore, the ALAG command
which delays the dosing time by T time units is used.

Data for control (black) and three dosing groups (0.1 mg/kg (red), 0.5 mg/kg (blue) and

2.5 mg/kg (green)), each consisting of 25 individuals, was simulated with the DDE Eqs.

(11)-(13) in MATLAB. PK profiles were equal for all individuals. The parameter k4 (production

rate of inflammation driven by GM-CSF), Emax (maximal effect of the drug) and T (delay

until onset of bone destruction) have log-normal distributed BSV. A proportional error model

was applied. Data was refitted with the presented NONMEM implementation.

k1 k2 k4 k5 Emax EC50 T I0 ω2
k4

ω2
Emax

ω2
T ε

Original 0.75 1.2 0.1 0.15 10 1 10 2.5 0.01 0.04 0.04 0.025
Estimate 0.746 1.19 0.100 0.143 10.2 1.02 9.92 2.49 0.009 0.037 0.039 0.018

Fixed parameter kel = 0.25, V = 1, k3 = 5, a = 1 and b = 0.5. Covariance step failed.

Response R1(t) = I(t) +D(t)
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Response R2(t) = D(t)
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