University at Buffalo
The State University of New York

Solving Semi-Delay Differential Equations in NONMEM

Universität

Konstanz

Gilbert Koch ${ }^{1}$, Wojciech Krzyzanski ${ }^{1}$ and Johannes Schropp ${ }^{2}$

(1) Department of Pharmaceutical Sciences, The State University of New York at Buffalo, USA
(2) Department of Mathematics and Statistics, University of Konstanz, Germany

Introduction and Objective

Delay differential equations (DDEs) are a growing tool to model delays (e.g. strongly delayed response) or lifespans (e.g. maturation processes in populations) in pharmacokinetics/pharmacodynamics (PKPD) [1]. In contrast to its ordinary differential equation (ODE) counterpart, a DDE describes a delay or lifespan with an explicit delay parameter T in the argument of the state. Currently, DDEs could not be directly solved in NONMEM. However, we identified a sub-class of DDEs, calling them Semi-DDEs, which often appear in PKPD modeling [1]. These Semi-DDEs could be rewritten by two systems of ODEs, one system for the time before the delay T and one for time after T. Applying the ALAG command and a case-by-case analysis, Semi-DDEs could be solved with NONMEM.

Delay Differential Equations:

The general form of a DDE with a single delay $T>0$ reads

$$
\begin{equation*}
\frac{d}{d t} x(t)=f(t, x(t), x(t-T)), \quad x(t)=x^{0}(t) \text { for } t \leq 0 \tag{1}
\end{equation*}
$$

In contrast to ODEs, where $T=0$, the mechanism f additionally depends on the delayed state $x(t-T)$ and we have an initial function $x^{0}(t)$ describing the past $-T \leq t \leq 0$ instead of an initial value at $t=0$.

Semi-Delay Differential Equations:

We identified an important sub-class of DDEs, calling them Semi-DDEs in [1]. The general structure of a Semi-DDE with a single delay $T>0$ reads

$$
\begin{array}{ll}
\frac{d}{d t} u(t)=g(t, u(t)), & u(t)=u^{0}(t) \text { for } t \leq 0 \\
\frac{d}{d t} v(t)=h(t, u(t), u(t-T), v(t)), & v(0)=v^{0} \tag{3}
\end{array}
$$

Here the mechanism g does not depend on v and its delayed state $u(t-T)$. However, $u(t-T)$ is used to describe the mechanism h for $v(t)$ and therefore a past for $u(t)$ is necessary. Note that $v(t)$ has no past but an initial value.

Method

General method to rewrite a Semi-DDE (2)-(3) to a system of two ODEs:
Step 1: $0 \leq t \leq T$
Substituting the explicitly initial function u^{0} for the delayed state $u(t-T)$ gives the ODE

$$
\begin{align*}
\frac{d}{d t} u(t) & =g(t, u(t)), & u(0) & =u^{0}(0) \tag{4}\\
\frac{d}{d t} v(t) & =h\left(t, u(t), u^{0}(t-T), v(t)\right), & v(0) & =v^{0} \\
\frac{d}{d t} z(t) & =0, & u(0) & =u^{0}(0) \tag{5}
\end{align*}
$$

where Eq. (6) is a place holder for the upcoming delayed version of Eq. (4). Step 2: $t \geq T$
Duplicate Eq. (4), where z now describes the state of u before $t-T$ time units, i.e. $z(t)=u(t-T)$. We denote by $\left(u^{T}, v^{T}\right)$ the value of $u(t)$ and $v(t)$ at time point T. Then the second ODE reads

$$
\begin{array}{llrl}
\frac{d}{d t} u(t) & =g(t, u(t)), & u(T) & =u^{T} \\
\frac{d}{d t} v(t) & =h(t, u(t), z(t), v(t)), & & v(T)=v^{T} \\
\frac{d}{d t} z(t) & =g(t-T, z(t)), & z(T) & =u^{0}(0)
\end{array}
$$

Note that there are no more delayed states in the right hand side of Eqs. (7)-(9).

References:

[1] Koch G, Krzyzanski W, Perez-Ruixo JJ, Schropp J (2014) Modeling of delays in PKPD Classical approaches and a tutorial for delay differential equations. JPKPD (accepted)

Acknowledgment:

The present project is supported by the National Research Fund, Luxembourg, and cofunded under the Marie Curie Actions of the European Commission (FP7-COFUND), and National Institute of Health Grant GM 57980.

Application / Results

In CIA mice increased GM-CSF $G(t)$ is inhibited by a drug $c(t)$. A total arthritic score (TAS) $R_{1}(t)$, an overall description of inflammation $I(t)$ and bone destruction $D(t)$, and a pure bone destruction score (AKS) $R_{2}(t)$ were measured. The visibility of bone destruction is strongly delayed due to first signs of inflammation. This delay is described by an explicit delay parameter $T>0$. Further it is assumed, that cytokine overproduction starts earlier before the mouse visibly develops inflammation, modeled by an initial function.
The rheumatoid arthritis (RA) model in DDE formulation [1] reads

$$
\begin{array}{rlrl}
\frac{d}{d t} c(t) & =-k_{e l} c(t) & c(0) & =\frac{d o s e}{V} \\
\frac{d}{d t} G(t) & =k_{3}-\frac{k_{1}}{k_{2}}\left(1-\exp \left(-k_{2} t\right)\right) & G(t)-\frac{E_{\max } c(t)}{E C_{50}+c(t)} G(t) \\
G(t) & =a \exp (b t) \text { for }-T \leq t \leq 0 \\
\frac{d}{d t} I(t) & =k_{4} G(t)-k_{4} G(t-T), & I(0)=I_{0} \\
\frac{d}{d t} D(t) & =k_{4} G(t-T)-k_{5} D(t), & D(0)=0
\end{array}
$$

where $R_{1}(t)=I(t)+D(t)$ is the TAS and $R_{2}(t)=D(t)$ the AKS.
NONMEM implementation of the ODE formulation of Eqs. (10)-(13):
\$DES
$c=A(1) / V$
cdel $=A(2) / V$
eff $=($ Emax*C) $/(E C 50+c)$
effdel $=($ Emax $*$ cdel $) /(E C 50+c d e l)$
$\operatorname{DADT}(1)=-\mathrm{kel} * \mathrm{~A}(1)$
$\operatorname{DADT}(2)=-\mathrm{kel} * \mathrm{~A}(2)$
$\operatorname{DADT}(3)=k 3-\operatorname{eff*A(3)-(k1/k2)*(1-\operatorname {exp}(-k2*t))*A(3)~}$
if (t.LE. Tlag) then
DADT (4) $=k 4 * A(3)-k 4 * a a * \exp (b b *(t-T l a g))$
$\operatorname{DADT}(5)=k 4 * a a * \exp (b b *(t-T l a g))-k 5 * A(5)$
$\operatorname{DADT}(6)=0$
else
$\operatorname{DADT}(4)=k 4 * A(3)-k 4 * A(6)$
$\operatorname{DADT}(5)=k 4 * A(6)-k 5 * A(5)$
$\operatorname{DADT}(6)=k 3-\operatorname{effdel*A(6)~}$
$(k 1 / k 2) *(1-\exp (-k 2 *(t-T l a g))) * A(6)$
endif
where $\operatorname{Tlag}=T, \mathrm{aa}=a$ and $\mathrm{b} \mathrm{b}=b$.
Remark: For $0 \leq t \leq T$ the delay appears in the substituted initial function. For $t>T$ the delay is in the PK. Therefore, the ALAG command which delays the dosing time by T time units is used.

Data for control (black) and three dosing groups ($0.1 \mathrm{mg} / \mathrm{kg}$ (red), $0.5 \mathrm{mg} / \mathrm{kg}$ (blue) and $2.5 \mathrm{mg} / \mathrm{kg}$ (green)), each consisting of 25 individuals, was simulated with the DDE Eqs. (11)-(13) in MATLAB. PK profiles were equal for all individuals. The parameter k_{4} (production rate of inflammation driven by GM-CSF), $E_{\max }$ (maximal effect of the drug) and T (delay until onset of bone destruction) have log-normal distributed BSV. A proportional error model was applied. Data was refitted with the presented NONMEM implementation.

	k_{1}	k_{2}	k_{4}	k_{5}	$E_{\max }$	$E C_{50}$	T	I_{0}	$\omega_{k_{4}}^{2}$	$\omega_{E_{\max }}^{2}$	ω_{T}^{2}	ε
Original	0.75	1.2	0.1	0.15	10	1	10	2.5	0.01	0.04	0.04	0.025
Estimate	0.746	1.19	0.100	0.143	10.2	1.02	9.92	2.49	0.009	0.037	0.039	0.018
Fixed parameter $k_{e l}=0.25, V=1, k_{3}=5, a=1$ and $b=0.5$. Covariance step failed.												

