In silico simulation study: A comparison of two population pharmacokinetic models of tamoxifen and its major metabolite endoxifen

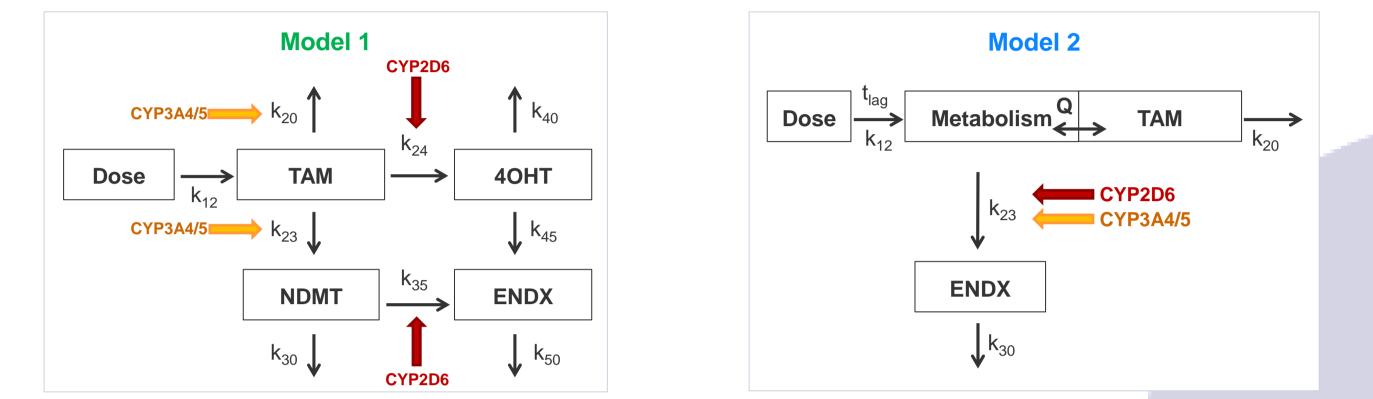
L. Klopp-Schulze (1), M. Joerger (2), Z. P. Parra-Guillen (1), C. Kloft (1)

(1) Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Germany,
(2) Dept. of Medical Oncology & Hematology, Cantonal Hospital St. Gallen, Switzerland

Background and Objectives

A high variability in the pharmacokinetics (PK) of **tamoxifen (TAM)** and its **major metabolite endoxifen (ENDX)** in oestrogen receptor-positive breast cancer patients has been associated with differences in clinical efficacy and treatment-related toxicity. Therefore, optimising TAM therapy by a

personalised approach has been proposed [1, 2]. The aim of this study was to compare the characteristics of two recently published PK models of TAM and ENDX and their ability to reflect observed data [3].


Methods

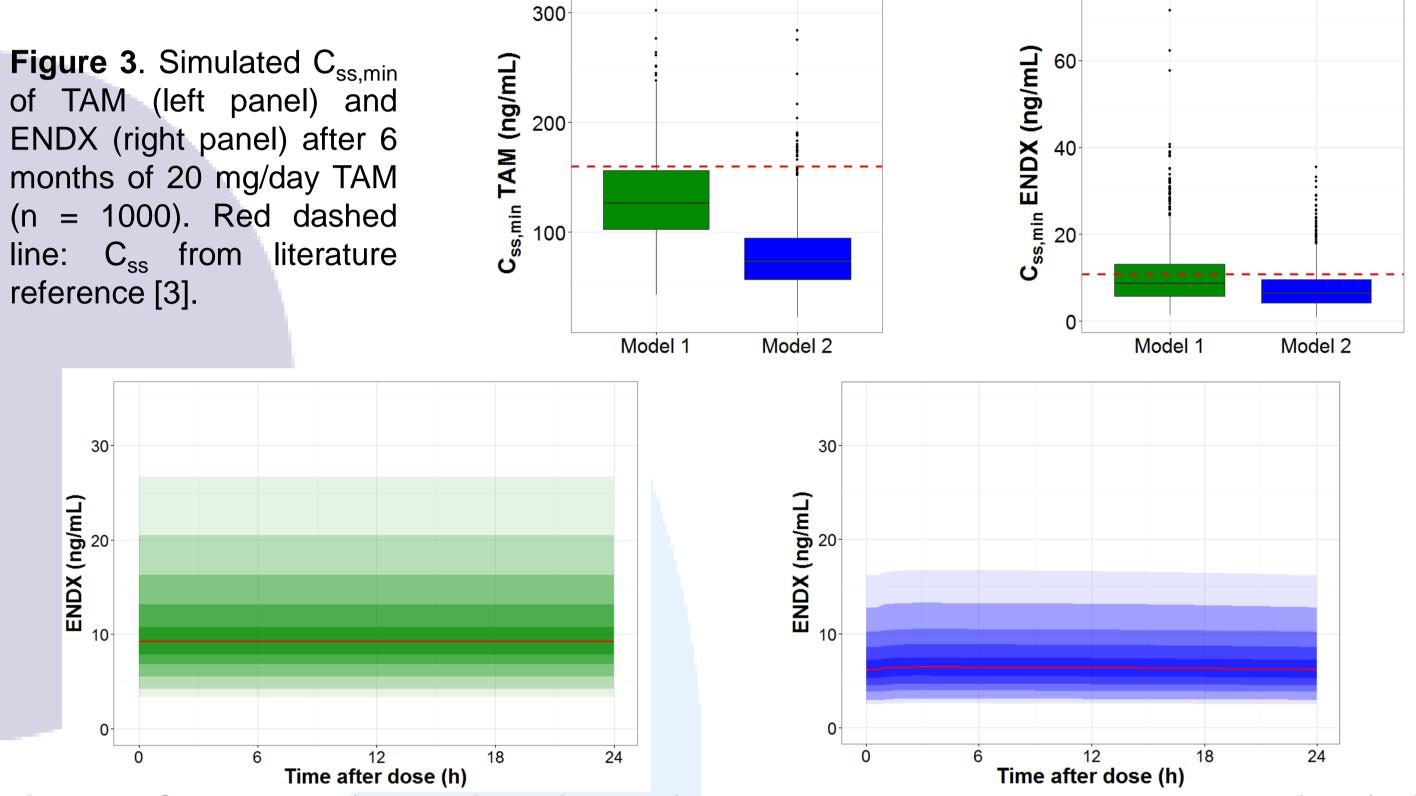
Deterministic and stochastic simulations (each n = 1000) were performed in Berkeley Madonna (8.3.18) using the published PK models

Results & Discussion

 \succ Simulations of typical populations (incl. covariates and IIV) using Model 1 and Model 2 resulted in modian **C TAM** of 126.5 and 73.1 ng/mL and

"Model 1" [1] and "Model 2" [2] (Fig. 1).

Figure 1. Schematic representation of the two PK models for TAM and metabolite(s). *Dose*: TAM dose; t_{lag} , lag time; k_{12} , absorption rate constant; k_{xy} , formation rate constant; k_{x0} , elimination rate constant; Q, inter-compartmental clearance; *NDMT*, N-desmethyltamoxifen; *4OHT*, 4-hydroxytamoxifen; *CYP3A4/5*, covariate CYP3A4/5; *CYP2D6*, covariate CYP2D6.


Table 1. Final parameter estimates frompublished PK models.

Parameter	Model 1 Estimates RSE. %		Model 2 Estimates RSE, %	
t _{lag} [h]		<u></u> , //	0.455	10.4
k ₁₂ [1/h]	0.7 a	25	1.90	20.2
CL/F _{TAM} [L/h]	5.8	3	9.34	6.2
$\theta_{CYP3A4/5}$	0.16	41		
V/F ₂ [L]	724	17	753	9
V/F ₃ [L]	$= V_2$		400 b	Ū
k ₂₀ [1/h]	0.00096 °		0.0124 d	
k ₂₃ [1/h]	0.007	14		
$\theta_{CYP3A4/5}$	0.07	38		
$k_{24} [1/h]$	0.000055	36		
$\theta_{CYP2D6_PM/IM}$	-0.26	17		
^с сүр206_рм/ім k ₃₅ [1/h]	0.0003	70		
θ_{CYP2D6_PM}	-0.96	4		
θ_{CYP2D6_IM}	-0.56	12		
$k_{45}[1/h]$	0.015	72		
k _{30/50} [1/h]	0.0086 d	. –	0.0128 ^d	
CL/F _{NDMT} [L/h]	3.4	19	010120	
CL/F_{4OHT} [L/h]	2.9	48		
CL/F_{ENDX} [L/h]	6.2	85	5.1 ^b	
CL/F_{MET} [L/h]	0.2	00	0.300	17
θ_{CYP2D6}			0.262	14
$\Theta_{CYP3A4/5}$			0.157	72
Q/F [L/h]			61.8	65.4
ω CL/F _{TAM,} %CV	25	8	37.8	19.2
$ω V/F_{TAM}$, % CV			26.7	53.9
ω CL/F _{MET.} % CV			25.4	19.3
ω k ₂₃ ,%CV	16	8		
ω k_{24}^{23} , % CV	26	12		
ω k_{35}^{24} % CV	59	10		
ρ (CL/F _{TAM} , V/F ₂), %	6		61.2	31.2
$\rho (k_{24} k_{45}), \%$	51	19		

- Simulations were investigated for multiple dosing of TAM (20 mg/day p.o.) and typical population PK estimates including clinically discussed covariates (CYP2D6, CYP3A4/5) on PK (Tab. 1).
- Stochastic and covariate models were implemented as described [1, 2].
- Continuous covariates were simulated from a log-normal distribution and categorical covariates from a discrete

and Model 2 resulted in median $C_{ss,min}$ TAM of 126.5 and 73.1 ng/mL and median $C_{ss,min}$ ENDX of 8.6 and 6.3 ng/mL, respectively (Fig.3).

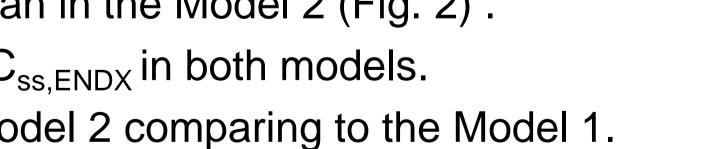
> Hence, data from literature [3] seems to be better reflected by Model 1.

Figure 4: Simulations of PK profiles of endoxifen at steady-state within a dosing interval (24 h) of 20 mg/day tamoxifen (n = 1000). Shaded areas: Percentile intervals with a gradient from 90% percentile interval (lightest) to 20% percentile interval (darkest). Red lines: Respective median.

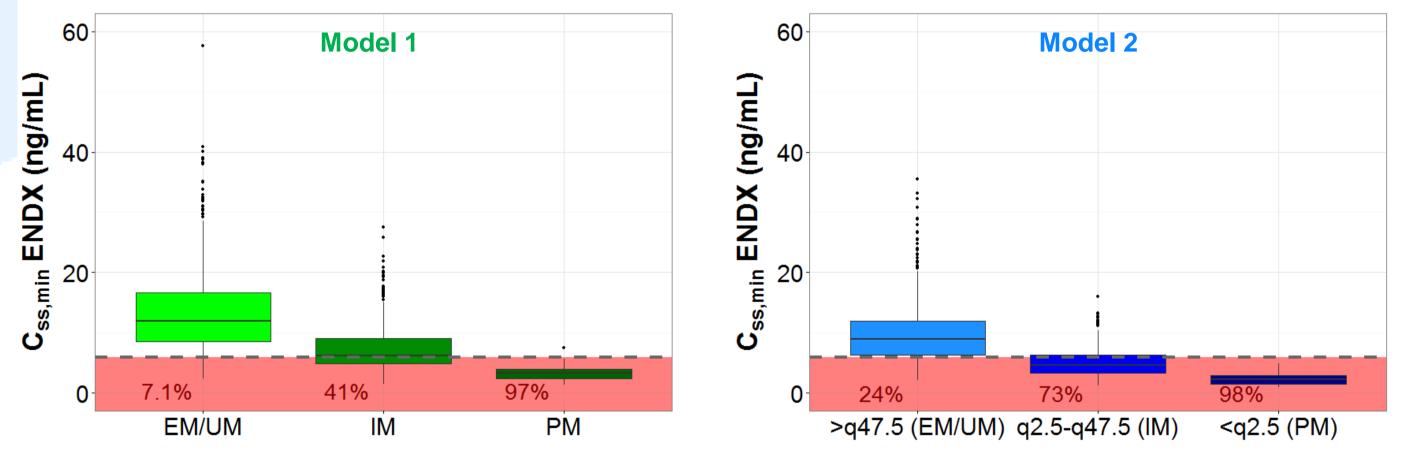
- C_{ss,ENDX} showed low fluctuations within a dosing interval for both models (Fig. 4).
- The PTA for the simulated populations (n = 1000, replicates = 100) using Model 1 was 76% (95% CI: 73% 78%) and 52% (95% CI: 50% 55%) when using Model 2.

probability distribution (resulting in the same CYP2D6 phenotype frequency for both models).

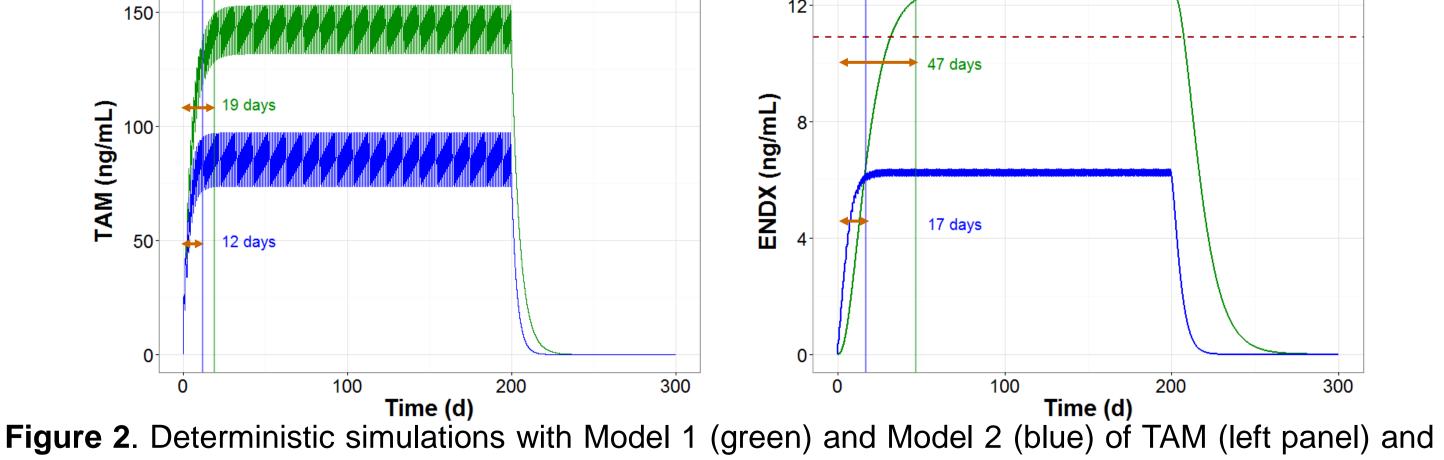
- Simulated concentrations were compared to (i) steady-state concentrations (C_{ss}) reported in [3] and to (ii) a proposed **threshold concentration of ENDX (C_{TH,ENDX})** of 5.97 ng/mL associated with therapeutic success [4].
- The probability of target attainment (PTA) defined as percentage of patients with $C_{ss,min}$ of ENDX > $C_{TH,ENDX}$ was calculated for each virtual population (R 3.2.0).


Results & Discussion

CL_{TAM}/V-k₂₃-k₂₄ d: Calculated by CL/V; CL/F, relative clearance; V/F, relative


volume of distribution; $\theta_{CYP3A4/5}$, CYP3A4/5 covariate effect; $\theta_{CYP2D6_PM/IM}$, CYP2D6 covariate effect; *MET*: Endoxifen formation; ω : Inter-individual

variability: *c*: Correlation coefficient:


- > PK profiles of TAM and ENDX showed higher C_{ss} and $t_{97\%Css}$ (time to 97% of steady-state) in **Model 1** than in the Model 2 (Fig. 2).
- \succ C_{ss,TAM} were ~10-fold higher than C_{ss,ENDX} in both models.
- $> C_{ENDX}$ increased more steeply in Model 2 comparing to the Model 1.

- Stratification by CYP2D6 activity identified patients at highest risk for subtherapeutic C_{ss,ENDX} i.e. poor metaboliser (PM) with a PTA < 3% in both models (Fig. 5).
- However, patients with higher CYP2D6 activity showed highly variable percentages of risk (< C_{TH,ENDX}) between Model 1 and Model 2 (*IM*, Intermediate metaboliser: 41% vs. 73%; *EM*, Extensive metaboliser: 7.1% vs. 24%).

Figure 5. Simulated $C_{ss,min}$ of ENDX after 6 months of 20 mg/day TAM stratified based on covariate CYP2D6 (n = 1000). Left panel: Virtual population of Model 1 stratified by metaboliser category (EM, incl. 2.5% ultra-rapid metaboliser, IM, PM). Right panel: Virtual population of Model 2 divided into quantiles based on CYP2D6 activity. Grey dashed line represents proposed therapeutic threshold [4]. Red numbers show percentage of patients at risk (< $C_{TH,ENDX}$).

ENDX (right panel) for a typical patient taking 20 mg/d TAM. Red dashed lines: C_{ss} from literature reference [3]. Orange arrows: $t_{97\%Css}$.

Conclusions

- This simulation study of TAM and ENDX displayed substantial differences between the investigated PK models.
- Also for anticipated exposure-response relationship, as indicated by the proposed threshold concentration, the two PK models resulted in a profoundly different probability of target attainment.
- External validation (with clinical trial data) with respect to the predictive performance of the PK models is currently ongoing and shall eventually contribute to a more comprehensive understanding of TAM/ENDX PK.

References:

[1] Dahmane EBA. *Thèse de doctorat: Univ. Genève* (2013) no. Sc. 4617.
[2] Ter Heine R et al. *Brit J Clin Pharmacol* (2014) 78(3): 572–86.
[3] Mürdter TE et al. *Clin Pharmacol Ther* (2011) 89(5): 708–17.
[4] Madlensky L et al. *Clin Pharmacol Ther* (2011) 89(5): 718–25.

For additional information, please contact: Lena Klopp-Schulze Email: lena.klopp-schulze@fu-berlin.de

CLINICAL PHARMACY