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Introduction and Objective

A population of individuals (e.g. cells) where every individual has its
own and unique lifespan could be described by a distributed lifespan model.
Such models were introduced by Krzyzanski, Woo and Jusko [1] to PKPD
modeling in the indirect response context.

Distributed lifespan model (DLSM)
The lifespan τ of the individuals is described by a distribution (e.g. Weibull
or gamma) with the corresponding probability density function l(τ ) for τ ≥ 0

and l(τ ) = 0 for τ < 0. The cumulative distribution function is denoted
by L(τ ), the expectation is T and the distribution parameters are a and b.
The distributed lifespan model in the rate of change formulation for the
population N(t) with the production term kin(t) reads

d

dt
N(t) = kin(t)− (kin ∗ l) (t) (1)

where ” ∗ ” is the convolution operator defined by the integral

(kin ∗ l) (t) =
∞∫
0

kin(t− s)l(s) ds . (2)

The initial condition is given by N(0) =
∞∫
0

l(x)
0∫
−x
kin(s) ds dx and reduces to

N(0) = k0inT in case of a constant past kin(t) = k0in for t < 0.

Difficulties:
•For any time point t, an integral (2) (the convolution) has to be calculated.
• In standard PKPD software the convolution can not be directly implemented.
•The convolution needs to be approximated by the user (Possible but difficult

to implement / Computationally slow.)

An equivalent formulation of the DLSM for implementation
is necessary!

Method
The solution representation of (1) reads

N(t) =

∞∫
0

(1− L(s)) kin(t− s) ds . (3)

Advantage: Formulation (3) could be simply approximated by standard
integration methods like the Riemann sum or the trapezoidal rule.

For illustration purpose, the simplest approximation (Riemann sum for-
mulation) of (3) for implementation reads

N(t) ≈ h
n∑
i=1

(1− L(ih)) kin(t− ih) (4)

where n is the number of partitions of the lifespan interval [0, τend] and h = τend
n .

Results
Summary

Model:
d

dt
N(t) = kin(t)− (kin ∗ l) (t) with N(0) = k0inT

Solution: N(t) =

∞∫
0

(1− L(s)) kin(t− s) ds

Implementation: N(t) ≈ h

n∑
i=1

(1− L(ih)) kin(t− ih)

•With the presented method, DLSMs could be implemented in every PKPD
software like e.g. ADAPT or NONMEM.
•The presented technique is also applicable for models with precursors.

Applications
Example 1: PKPD test problem
The PK c(t) is simulated with the Bateman function. Four dosing groups are
created with dosing time points at day 0 and 7. The production term for the
population N(t) described by (1) reads

kin(t) = k0in

(
1 +

Smaxc(t)

SC50 + c(t)

)
for t ≥ 0

with kin(t) = k0in for t < 0. Artificial data is produced by (3) with a Weibull
distributed lifespan L(τ ) = 1 − exp(−(τ/b)a) and perturbed with a normal
distributed error. The solution (3) is approximated by the trapezoidal rule and
implemented in ADAPT and NONMEM to fit the produced data.
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Smax SC50 k0in a b T σ2

0.50 (3.16) 9.12 (11.4) 1.02 (4.21) 6.36 (3.09) 5.24 (7.51) 4.87 (7.65) 0.80 (10.9)

Estimates are calculated with ADAPT. Expectation T and variance σ2 are secondary parame-

ters. The values in the brackets denote the CV%. The NONMEM estimates are comparable to

those of ADAPT. The estimates are confirmed with the original model (1) in MATLAB.

Example 2: Stimulation of Hemoglobin (Hgb) by rHuEPO
In [2] hemoglobin measurements over 460 days in patients with a renal disease
are presented. 186 measurements and doses are performed. The model for red
blood cells (RBC) from [2] reads

d

dt
M(t) = kin(t−D)− (kin ∗ l)(t−D) , kin(t) =

SmaxEP (t)

SC50 + EP (t)
(5)

where a second order (a = 2) gamma distribution describes the RBC lifespan.
The time required for hematopoietic stem cells to become RBCs isD. The sum
of endogenous EPO and rHuEPO is denoted by EP (t). Endogenous concentra-
tion of Hgb isHen and the Hgb concentration is described byH(t) = KHM(t),
where KH = 29.5 (g/dL) is the average amount of Hgb per RBC. We applied
the presented method and approximated the explicit solution M(t) with the
trapezoidal rule. Data was fitted with ADAPT.
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Hen (g/dL) SC50 (IU) D (day) b T (day) σ2

10.26 (1.97) 86.71 (83.1) 6.98 (10.0) 0.605E-1 (10.0) 33.08 (10.0) 547 (20.0)

The PK (no measurements) is described by a non-linear approach and we fixed the parameter
to Vmax = 6980 (IU/day) and Km = 1042 (IU). Additionally, one drug-effect related parameter,
Smax = 0.207E-1 (cell/day), is also fixed. Values were taken from the original work [2].
Expectation T and variance σ2 are secondary parameters. Values in brackets denote the CV%.
The estimates are confirmed with the original model (5) in MATLAB.
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