

Extended npde diagnostics for the between subject-variability and residual error models

Ron Keizer, Kajsa Harling, Mats Karlsson

Pharmacometrics Research Group Department of Pharmaceutical Biosciences Uppsala University

This presentation

- ► EBE and IWRES diagnostics: limitations
- Improvement of EBE and IWRES diagnostics: npde's
 - Recap: What are npdes?
 - What are the new npdes?
- Experiences
- Conclusions
 - What do the new npdes offer?
 - ▶ How can we use them?

- Between subject variability: Empirical Bayes Estimates
- Diagnostic plots:

Distribution

- Between subject variability: Empirical Bayes Estimates
- Diagnostic plots:

Distribution

 $\text{EBE} \sim \text{EBE}$

- Between subject variability: Empirical Bayes Estimates
- Diagnostic plots:

Distribution

 $\mathrm{EBE}\sim\mathrm{EBE}$

 ${\sf EBE} \sim {\sf covariates}$

Limitation: η -shrinkage ¹

 $\eta\text{-}\mathsf{shrinkage:}$ With decreasing information content, EBE's shrink towards the population estimate

¹Karlsson & Savic, Clin Pharmacol Ther 2007

Residual error: Individual Weighted Residuals:

$$\mathsf{IWRES} = rac{\hat{y}_{ij} - y_{ij}}{\sigma}$$

Diagnostic plots:

Distribution

► Residual error: Individual Weighted Residuals:

$$\mathsf{IWRES} = \frac{\hat{y}_{ij} - y_{ij}}{\sigma}$$

► Residual error: Individual Weighted Residuals:

$$\mathsf{IWRES} = \frac{\hat{y}_{ij} - y_{ij}}{\sigma}$$

Limitation: ϵ -shrinkage ²

E_{max} model fitted to data simulated with a sigmoidal E_{max} model

²Karlsson & Savic, Clin Pharmacol Ther 2007

Proposed solution

- Compares EBE and IWRES to expected distributions
 - Not/less affected by shrinkage?

Recap: What are npdes?

Normalized predictive distribution errors ³

Location of observations in own expected distribution

- Expected distribution obtained by simulation
- npdes are expected to follow $\mathcal{N}(0,1)$
- original npdes called DV_{npde} here

³Brendel et al, *Pharm Res* 2006

npdes, calculation $^{\rm 5}$

- Simulate n new datasets from model M
- Substract the expectation⁴ from Y_i and Y_i^{sim} :

$$\mathbb{E}(Y_i) = \frac{1}{K} \sum_{k=0}^{K} Y_i^{sim(k)}$$
(1)

$$Y_{i,ecorr} = Y_i - \mathbb{E}(Y_i)$$
⁽²⁾

$$Y_{i,ecorr}^{sim} = Y_i^{sim} - \mathbb{E}(Y_i)$$
(3)

⁴ obtained through simulation

⁵Comets et al. Comput Methods Programs Biomed 2008

npdes, explanation

- Decorrelation: ⁶
 - Observations:

$$Y_i^* = \frac{Y_{i,ecorr}}{var(Y_i)^{1/2}} \tag{4}$$

► Simulations:

$$Y_i^{sim(k)*} = \frac{Y_{i,ecorr}^{sim}}{var(Y_i)^{1/2}}$$
(5)

 $[\]mathbf{6}_{''}$ square root of matrix" calculated e.g. using Cholesky decomposition

Now, rank decorrelated observations:

$$pde_{ij} = F_{ij}^*(y_{ij}^*) \approx \frac{1}{K} \sum_{k=0}^K \delta_{ijk}^*$$
(6)

 pde_{ij} should follow $\mathcal{U}(0,1)$ if K is large

$$npde_{ij} = \frac{pde_{ij}}{\Phi} \tag{7}$$

 $npde_{ij}$ should follow $\mathcal{N}(0,1)$ if K is large

Instead of DV_{npde} , calculate EBE_{npde} and $IWRES_{npde}$ ⁷

- Simulate *n* times from model *M*, unders same design $(n \approx 1000)$
- ► Re-estimate EBEs in *M* on generated datasets (MAXEVAL=0)
- Calculate EBE_{npde} and IWRES_{npde} based on estimated (from observed data) and re-estimated (from simulations) values

⁷Note: So for EBE, decorrelation occors on EBE-level

Simulation analyses

- Investigate power of new npdes compared to original diagnostics
- ability to diagnose model misspecification? (better than EBE / IWRES)
 - \blacktriangleright in cases of increasing $\eta\text{-}$ and $\epsilon\text{-shrinkage}$
 - not inducing false correlations?

- ► Emax / EC₅₀ problem
- No correlation $Emax_i \sim EC_{50,i}$ in M_{sim}
- η -shrinkage induced by removing datapoints

- 1 cmt IV problem
- Correlation $CL_i \sim V_{d,i}$ in M_{sim} : 50%
- η -shrinkage induced by removing datapoints

- 1 cmt IV problem
- Correlation $CL_i \sim Weight_i$ in M_{sim}
- η -shrinkage induced by removing datapoints

• EBE_{npde} more powerful than EBE in cases of η -shrinkage:

- Able to find correlations in Ω (when truly present)
- Does not falsely induce correlation in Ω
- Identify covariates
- Does not falsely induce covariate relationships

- ► Emax / EC₅₀ model
- Prop + Add error model in M_{sim}
- Only Add component in M_{est}

- ► Emax / EC₅₀ model
- Prop + Add error model in M_{sim}
- Only Prop component in M_{est}

Increasing shrinkage %

- ► Correlated residuals in *M*_{sim} (AR-1 error model⁸)
- Estimate without AR-1 model

⁸Karlsson et al. *JPB 1995*

IWRES_{npde}: Serial correlation

IWRES_{npde}: Serial correlation

Increasing shrinkage % 9% Shrinkage 11% Shrinkage 17% Shrinkage 27% Shrinkage Residual t+1 IWRES 0. -4 IWRES_npde Residual t+1 0--2 --4 Residual t

IWRES_{npde}: Serial correlation

Conclusions IWRES_{npde}

▶ IWRES_{npde} more powerful diagnostic than IWRES?

- In selected cases of ϵ -shrinkage
- In some cases, did not improve diagnostic power
- \blacktriangleright Other diagnostics could be better in case of $\epsilon\text{-shrinkage}$
 - e.g. CWRES⁹ for identification of AR-1 correlation

⁹Hooker et al. Pharm Res 2007

Implemented in PsN

Example:

ebe_npde run1.mod -dir=npde1 -samples=1000

- ► This will calculate both EBE_{npde} and IWRES_{npde}.
- Diagnosic plots in Xpose will be implemented soon.

Conclusions

- Diagnostic power $EBE_{npde} > EBE$ in cases of η -shrinkage
- Diagnostic power IWRES_{npde} \geq IWRES in cases of ϵ -shrinkage
- Applications in model diagnosis:
 - Especially distributions and correlations
 - Covariate analyses
 - Decompose DV_{npde} into EBE_{npde} & IWRES_{npde}: identify level of misspecification

Acknowledgements

Uppsala colleagues

The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement n 115156, resources of which are composed of financial contributions from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies in kind contribution. The DDMoRe project is also supported by financial contribution from Academic and SME partners. This work does not necessarily represent the view of all DDMoRe partners.

Also sponsored by a grant from:

