Extended npde diagnostics for the between subject-variability and residual error models

Ron Keizer, Kajsa Harling, Mats Karlsson
Pharmacometrics Research Group
Department of Pharmaceutical Biosciences
Uppsala University

This presentation

- EBE and IWRES diagnostics: limitations
- Improvement of EBE and IWRES diagnostics: npde's
- Recap: What are npdes?
- What are the new npdes?
- Experiences
- Conclusions
- What do the new npdes offer?
- How can we use them?

Diagnosis of random effects models

- Between subject variability: Empirical Bayes Estimates
- Diagnostic plots:

Distribution UNIVERSITET

Diagnosis of random effects models

- Between subject variability: Empirical Bayes Estimates
- Diagnostic plots:

Distribution

$\mathrm{EBE} \sim \mathrm{EBE}$

Diagnosis of random effects models

- Between subject variability: Empirical Bayes Estimates
- Diagnostic plots:

Distribution

$\mathrm{EBE} \sim \mathrm{EBE}$

$\mathrm{EBE} \sim$ covariates

Diagnosis of random effects models

 UNIVERSITET
Limitation: η-shrinkage ${ }^{1}$

η-shrinkage: With decreasing information content, EBE's shrink towards the population estimate
${ }^{1}$ Karlsson \& Savic, Clin Pharmacol Ther 2007

Diagnosis of random effects models

- Residual error: Individual Weighted Residuals:

$$
\text { IWRES }=\frac{\hat{y}_{i j}-y_{i j}}{\sigma}
$$

- Diagnostic plots:

Distribution

Diagnosis of random effects models

- Residual error: Individual Weighted Residuals:

$$
\text { IWRES }=\frac{\hat{y}_{i j}-y_{i j}}{\sigma}
$$

- Diagnostic plots:

Distribution

IWRES $\sim x$

Diagnosis of random effects models

- Residual error: Individual Weighted Residuals:

$$
\text { IWRES }=\frac{\hat{y}_{i j}-y_{i j}}{\sigma}
$$

- Diagnostic plots:

Distribution

IWRES $\sim x$

|IWRES| $\sim \hat{y}$

Diagnosis of random effects models

Limitation: ϵ-shrinkage ${ }^{2}$

Proposed solution

- Calculate npdes of EBE and IWRES:
- $\mathrm{EBE}_{\text {npde }}$
- IWRES $n p d e$
- Compares EBE and IWRES to expected distributions
- Not/less affected by shrinkage?

Recap: What are npdes?

- Normalized predictive distribution errors ${ }^{3}$
- Location of observations in own expected distribution
- Expected distribution obtained by simulation
- npdes are expected to follow $\mathcal{N}(0,1)$
- original npdes called DV ${ }_{\text {npde }}$ here

[^0]
npdes, calculation ${ }^{5}$

- Simulate n new datasets from model M
- Substract the expectation ${ }^{4}$ from Y_{i} and $Y_{i}^{\text {sim }}$:

$$
\begin{gather*}
\mathbb{E}\left(Y_{i}\right)=\frac{1}{K} \sum_{k=0}^{K} Y_{i}^{\operatorname{sim}(k)} \tag{1}\\
Y_{i, e c o r r}=Y_{i}-\mathbb{E}\left(Y_{i}\right) \tag{2}\\
Y_{i, e c o r r}^{\text {sim }}=Y_{i}^{\text {sim }}-\mathbb{E}\left(Y_{i}\right) \tag{3}
\end{gather*}
$$

[^1]
npdes, explanation

- Decorrelation: ${ }^{6}$
- Observations:

$$
\begin{equation*}
Y_{i}^{*}=\frac{Y_{i, \text { ecorr }}}{\operatorname{var}\left(Y_{i}\right)^{1 / 2}} \tag{4}
\end{equation*}
$$

- Simulations:

$$
\begin{equation*}
Y_{i}^{\operatorname{sim}(k) *}=\frac{Y_{i, e c o r r}^{\operatorname{sim}}}{\operatorname{var}\left(Y_{i}\right)^{1 / 2}} \tag{5}
\end{equation*}
$$

[^2]
npdes, explanation

- Now, rank decorrelated observations:

$$
\begin{equation*}
p d e_{i j}=F_{i j}^{*}\left(y_{i j}^{*}\right) \approx \frac{1}{K} \sum_{k=0}^{K} \delta_{i j k}^{*} \tag{6}
\end{equation*}
$$

$$
\text { pde }_{i j} \text { should follow } \mathcal{U}(0,1) \text { if } K \text { is large }
$$

- Finally:

$$
\begin{equation*}
n p d e_{i j}=\frac{p d e_{i j}}{\Phi} \tag{7}
\end{equation*}
$$

npde $i_{i j}$ should follow $\mathcal{N}(0,1)$ if K is large

New npde diagnostics: procedure

Instead of $\mathrm{DV}_{\text {npde }}$, calculate $\mathrm{EBE}_{\text {npde }}$ and $\mathrm{IWRES}_{\text {npde }}{ }^{7}$

- Simulate n times from model M, unders same design ($n \approx 1000$)
- Re-estimate EBEs in M on generated datasets (maxeval=o)
- Calculate $\mathrm{EBE}_{\text {npde }}$ and IWRES ${ }_{\text {npde }}$ based on estimated (from observed data) and re-estimated (from simulations) values

[^3]
Simulation analyses

- Investigate power of new npdes compared to original diagnostics
- ability to diagnose model misspecification?
(better than EBE / IWRES)
- in cases of increasing η - and ϵ-shrinkage
- not inducing false correlations? UNIVERSITET

$\mathrm{EBE}_{n p d e}$: correlation between $\eta(1)$

- Emax / EC50 problem
- No correlation Emax ${ }_{i} \sim E C_{50, i}$ in $M_{\text {sim }}$
- η-shrinkage induced by removing datapoints

$\mathrm{EBE}_{\text {npde }}$: correlation between $\eta(1)$

$\mathrm{EBE}_{\text {npde }}$: correlation between $\eta(2)$

- 1 cmt - IV problem
- Correlation $C L_{i} \sim V_{d, i}$ in $M_{\text {sim }}: 50 \%$
- η-shrinkage induced by removing datapoints

$\mathrm{EBE}_{\text {npde }}$: correlation between η (2)

\longrightarrow Increasing shrinkage \%

$\mathrm{EBE}_{\text {npde }}$: correlation with covariates

- 1 cmt - IV problem
- Correlation $C L_{i} \sim$ Weight $_{i}$ in $M_{\text {sim }}$
- η-shrinkage induced by removing datapoints

$\mathrm{EBE}_{\text {npde }}$: correlation with covariates

Conclusions $\mathrm{EBE}_{\text {npde }}$

- $\mathrm{EBE}_{\text {npde }}$ more powerful than EBE in cases of η-shrinkage:
- Able to find correlations in Ω (when truly present)
- Does not falsely induce correlation in Ω
- Identify covariates
- Does not falsely induce covariate relationships

IWRES $_{\text {npde }}$: residual error diagnosis(1)

- Emax / EC 50 model
- Prop + Add error model in $M_{\text {sim }}$
- Only Add component in $M_{\text {est }}$

UPPSALA UNIVERSITET

IWRES $_{\text {npde }}$: residual error diagnosis(1)

 \longrightarrow Increasing shrinkage \%

UPPSALA UNIVERSITET

IWRES $_{\text {npde }}$: residual error diagnosis(1)

UPPSALA UNIVERSITET

IWRES $_{\text {npde }}$: residual error diagnosis(1)

IWRES $_{\text {npde }}$: residual error diagnosis(2)

- Emax / EC 50 model
- Prop + Add error model in $M_{\text {sim }}$
- Only Prop component in $M_{\text {est }}$

UPPSALA UNIVERSITET

IWRES $_{\text {npde }}$: residual error diagnosis(2)

 \longrightarrow Increasing shrinkage \%

IWRES $_{\text {npde }}$:

 UNIVERSITET

UPPSALA UNIVERSITET

IWRES $_{\text {npde }}$:

- IWRES
- IWRES_npde

IWRES $_{\text {npde }}$: residual error diagnosis(3)

- Correlated residuals in $M_{\text {sim }}$ (AR-1 error model ${ }^{8}$)
- Estimate without AR-1 model

[^4]
IWRES $_{\text {npde }}$: Serial correlation

 UNIVERSITET\longrightarrow Increasing shrinkage \%

UPPSALA UNIVERSITET

IWRES $_{\text {npde }}$: Serial correlation

UPPSALA UNIVERSITET

IWRES $_{\text {npde }}$: Serial correlation

Conclusions IWRES ${ }_{\text {npde }}$

- IWRES ${ }_{n p d e}$ more powerful diagnostic than IWRES?
- In selected cases of ϵ-shrinkage
- In some cases, did not improve diagnostic power
- Other diagnostics could be better in case of ϵ-shrinkage
- e.g. CWRES ${ }^{9}$ for identification of AR-1 correlation

[^5]
Implemented in PsN

Example:

```
ebe_npde run1.mod -dir=npde1 -samples=1000
```

- This will calculate both $\mathrm{EBE}_{\text {npde }}$ and IWRES $_{\text {npde }}$.
- Diagnosic plots in Xpose will be implemented soon.

Conclusions

- Diagnostic power $\mathrm{EBE}_{\text {npde }}>\mathrm{EBE}$ in cases of η-shrinkage
- Diagnostic power IWRES $_{\text {npde }} \geq$ IWRES in cases of ϵ-shrinkage
- Applications in model diagnosis:
- Especially distributions and correlations
- Covariate analyses
- Decompose $\mathrm{DV}_{\text {npde }}$ into $\mathrm{EBE}_{\text {npde }}$ \& $\mathrm{IWRES}_{\text {npde }}$: identify level of misspecification

Acknowledgements

UPPSALA UNIVERSITET

- Uppsala colleagues

The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement n 115156, resources of which are composed of financial contributions from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies in kind contribution. The DDMoRe project is also supported by financial contribution from Academic and SME partners. This work does not necessarily represent the view of all DDMoRe partners.

Also sponsored by a grant from:

[^0]: ${ }^{3}$ Brendel et al, Pharm Res 2006

[^1]: ${ }^{4}$ obtained through simulation
 ${ }^{5}$ Comets et al. Comput Methods Programs Biomed 2008

[^2]: ${ }^{6}$ "square root of matrix" calculated e.g. using Cholesky decomposition

[^3]: ${ }^{7}$ Note: So for EBE, decorrelation occors on EBE-level

[^4]: ${ }^{8}$ Karlsson et al. JPB 1995

[^5]: ${ }^{9}$ Hooker et al. Pharm Res 2007

