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Linking mechanistic and phenotypic resistance factors: We showed that for our 
drug effect model, res = RF under the conditions of the phenotypic replication assay. 
 
Linking mechanistic and statistical waiting times to mutations: Average statistical 
waiting times to different mutations were computed from the CBN representation. 
Analogous mechanistic waiting times were written as 
 
 
 
 
A least squares optimization by repeated rounds of simulated annealing and simplex 
search algorithms was used to estimate fitness costs of ZDV mutants: 
 

 
Excellent agreement with literature on various features is observed. The clustering of 
mutations along the well-known TAM-1 and TAM-2 pathways is noted. The TAM-1 
mutants are observed to incur a lower fitness cost compared to their TAM-2 
counterparts.  
 We also estimated fitness characteristics in 

the presence of ZDV by using the selective 
advantage for a mutant i given by 
 
                                                
 
This quantity captures the combined effects 
of fitness costs and resistance factors.  
 
 
Since we used a mechanistic model, we also 
had access to time course accumulation of 
different mutations. Further, our setting also 
allowed us to examine epistatic effects (not 
shown).  
 
 To demonstrate the generality of our approach, we also estimated fitness costs for 

mutants arising under IDV therapy. Here again, we note excellent agreement with 
established fitness characteristics:	  
	  

We recovered the staircase feature in the protease inhibitor fitness landscape. We also 
note the compensatory role played by the mutation A71V (site 3). Initial mutations confer 
significant resistance while also incurring large fitness costs. The incentive for later 
mutations appears to be a recovery in fitness. 

Tj,mech = inf{t ≥ 0 :
�

mi∈G
mi�j

Vmi(t) > 0.2 · Vtot(t) and Vtot(t) > D}.

Mechanistic viral infection models have long been used to investigate in vivo viral 
dynamics [1], while statistical models [2] have been applied to learn mutational schemes 
from genotyping data after virological failure in patient cohorts. 
 
 

We developed a methodology to integrate these two modelling strategies and then 
evaluated our combined approach by estimating fitness characteristics of various 
mutants arising under anti-HIV therapy with zidovudine (ZDV), a reverse transcriptase 
inhibitor and indinavir (IDV), a protease inhibitor.  

	  

Viral dynamics model: We used a two stage viral dynamics model [3] parametrized in 
terms of infection rates, fitness costs (s) and mechanistic resistance factors (res). We 
modelled drug effect by inhibiting targeted reactions: 
 
 
 
 
 
 
 
Statistical resistance model: We used conjunctive Bayesian networks (CBNs) that were 
learned from clinical data (the HIV Stanford database) by EM-algorithm and predicted 
average waiting times to different mutations. Phenotypic resistance factors (RF) were 
learned from in vitro data by isotonic regression: 
 

ki → kwt · (1− si) · (1− εi)

resi =
IC50imech

IC50wt
mech

εi =
Cdrug/IC50imech

1 + Cdrug/IC50imech

RFi =
IC50ipheno
IC50wt

pheno

Such an integrated statistical-mechanistic modelling approach has several advantages. It 
utilizes realistic mutation schemes while retaining mechanistic features of the viral 
dynamics. Further work includes extending the approach to multiple drug regimens and 
examining treatment switching outcomes. Fitness landscapes also play an important role 
in treatment interruptions and novel therapeutic approaches such as targetting the error 
catastrophe [5]. 
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SAi =
(1− si) · (1− εi)

(1− εwt)
.
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