BAYESIAN VARIABLE SELECTION FOR HIGH-THROUGHPUT GENETIC ASSOCIATION ANALYSIS IN POPULATION PHARMACOKINETICS

Julie Bertrand 1 , Maria de Iorio 2 , Celine Verstuyft 3 , Monidarin Chou 4 , Anne-Marie Taburet 5 , David Haas 6 and David J Balding 1

¹ University College London Genetics Institute, London, UK, ² University College London Statistical Science Department, London, UK, ³ Departments of Molecular Genetics, Pharmacogenetic, and Hormonology, Assistance Publique Hopitaux de Paris, Hopital Bicetre, Paris, France, and Univ Paris-Sud, EA2706, France, ⁴ Rodolphe Merieux Laboratory, Faculty of Pharmacy, University of Health Sciences, Phnom Penh, Cambodia, ⁵ Clinical Pharmacy Department, Assistance Publique Hopitaux de Paris, Hopital Bicetre, Paris, Hopital Bicetre, Paris, France, ⁶ Center for Human Genetics Research, Departments of Medicine and Pharmacology, Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA

CONTEXT

- Previous works have shown the need to increase the sample size of pharmacogenetic studies¹
- combination of genetic and pharmacokinetic data from several sources e.g. phase I,II and III studies
- Simultaneous estimation of pharmacokinetic parameters and genetic effect sizes using penalized regression can outperform the standard stepwise procedure²

- implementation in a maximum likelihood framework (saemix³), not yet handling ODEs and inter-occasion variability
- Bayesian approaches are growing in importance in high-throughput genetic association studies
 - natural interpretation of penalized regression through prior distribution on effect sizes
 - can manage both complex data structure and missing genetic data
 - fast, robust and cross-platform programs now available such as JAGS⁴ and Stan⁵

OBJECTIVES

- Simulation study evaluating the selection performance and computing times of several Bayesian approaches
- Motivating real case study
 - PECAN ANRS 12154 study of steady-state nevirapine clearance among HIV-infected Cambodians ⁶
 - substudy on additional polymorphisms contribution to variable nevirapine clearance in this cohort ⁷

SIMULATION STUDY

- Simulation settings
- phase-II like study design with 300 subjects
- * 6 sampling times (1,2,4,6 and 12 h)
- * 1200 single nucleotide polymorphisms (SNP) from the DMET chip⁸
- pharmacogenetic model

 $\xrightarrow{k_a} V_c \qquad \xrightarrow{Q} V_p$

* normally distributed inter-individual random

- mean [range] computing times in hours

Stepwise procedure	0.24 [0.06 - 1.09]
SAEMpr	1.14[0.83 - 1.61]
IMs	19.58 [11.51 - 23.12]

MOTIVATING REAL CASE STUDY

Pharmacogenetic data

effects (η) on all parameters but V_p

* combined residual error model

- 129 patients on up to 3 occasions with 196 markers

Chromosome	3	7			19	
Gene	NR112 (PXR)	ABCB1 (P-gp)	CYP3A5	СҮРЗА4	CYP2A6	CYP2B6
Number of markers	49	63	1	36	1	47

- 218 missing polymorphisms with a maximum of 7 per subject)

Analyses

- one compartment model with 1st-order absorption and elimination
- inter-individual and inter-occasion variability on clearance
- adjustment for rs3745274 polymorphism on CYP2B6
- methods to select genetic markers and handle missing data:
 - * stepwise procedure on empirical Bayes estimates with missing data removed ⁷
- * Indicator Model selection with missing data imputed in JAGS from Binomial with empirical allele frequency

- Indicator Model selection

○ rs7251950

Results

stepwise procedure

			0.010	
			0.005	
rs number	eta_s estimate	p-value	late 0.000	∘ rs6508966 ors6508966 ors6508966 (in LD with rs2279343 at r ² > 0.8)
rs2279343	0.835	1.66e-5	estim 305 C	

- stenwise procedure (SP) using see
- stepwise procedure (SP) using saemix
- i) screening of SNPs on empirical Bayes estimates of individual parameters $\hat{\phi_i}$ using a Sidak correction .
- ii) forward model inclusion of significant SNPs on likelihood ratio test
- iii) return to i), until no more significant SNP found
- SAEM with penalized regression (SAEMpr) using saemix

$$\widehat{\mu_{k+1},\beta_{s_{k+1}}} = \operatorname{argmin}_{\mu,\beta_s} \sum_{i=1}^{N} \left(\phi_{ik} - \mu - \sum_{s=1}^{N_s} \beta_s SNP_i \right)^2 + P_{\lambda}(\beta_s)$$

 $P_{\lambda}(\beta_s) \approx$ double exponential prior on β_s with λ set using an asymptotic approximation – Indicator Model selection (IMs)⁹using JAGS $P(I_s, \beta_s) = P(I_s)P(\beta_s)$ $P(\beta_s) = N(0, \sigma_{\beta_s})$ with a large σ_{β_s} $P(I_s) = \text{Bernoulli}(p_{I_s})$ an indicator variable with p_{I_s} set empirically Note: for SAEMpr and IMs the SNPs are centered and standardized

Evaluation

- explore association on 3 parameters: Cl, V_c and Q on 200 simulated data sets
- true positive (TP) = any significant SNP which is correlated with a causal variant with an $r^2 \ge 0.05$

- IMs initial simulation study results not yet competitive
- \hookrightarrow Future works: other indicator-based model selection and shrinkage prior on genetic effect sizes

¹ Tessier, Bertrand, Chenel, Comets. AAPS J (2015).

² Bertrand, de Iorio, Balding. *PGEN* (2014).

 3 Comets, Lavenu, Lavielle. *PAGE* 20^{th} (2011).

⁴ Plummer. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling (2003).
⁵ Stan Development Team. Stan: A C++ Library for Probability and Sampling, Version 2.5.0 (2014).

During this work, Julie Bertrand was supported by a fellowship from the UK Medical Research Council.

⁶ Bertrand et al. Antimicrob Agents Chemother (2010).
⁷ Bertrand et al. Pharmacogenet Genomics (2012).
⁸ Daly et al. Clinical Chemistry (2007).
⁹ Kuo & Mallick. Sankhya Ser. B (1998)