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CONTEXT

 Previous works have shown the need to increase the sample size of pharmacogenetic studies’

— combination of genetic and pharmacokinetic data from several sources e.g. phase |,Il and Il studies

e Simultaneous estimation of pharmacokinetic parameters and genetic effect sizes using penalized regression
can outperform the standard stepwise procedure?

— implementation in a maximum likelihood framework (saemix?), not yet handling ODEs and inter-occasion
variability

e Bayesian approaches are growing in importance in high-throughput genetic association studies

— natural interpretation of penalized regression through prior distribution on effect sizes
— can manage both complex data structure and missing genetic data
— fast, robust and cross-platform programs now available such as JAGS # and Stan >

OBJECTIVES

e Simulation study evaluating the selection performance and computing times of several Bayesian ap-
proaches

e Motivating real case study

— PECAN ANRS 12154 study of steady-state nevirapine clearance among HIV-infected Cambodians °
— substudy on additional polymorphisms contribution to variable nevirapine clearance in this cohort ’

SIMULATION STUDY

e Simulation settings

— phase-ll like study design with 300 subjects

* 6 sampling times (1,2,4,6 and 12 h)

* 1200 single nucleotide polymorphisms (SNP) from the DMET chip?®
— pharmacogenetic model
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e Methods to select genetic markers
— stepwise procedure (SP) using saemix

i) screening of SNPs on empirical Bayes estimates of individual parameters gzgz using a Sidak correction
ii) forward model inclusion of significant SNPs on likelihood ratio test
iii) return to i), until no more significant SNP found

— SAEM with penalized regression (SAEMpr) using saemix

i1 B = argming, 5 S (65— 1= X0 BSNE) + P8
Py (Bs) ~ double exponential prior on 35 with \ set using an asymptotic approximation
— Indicator Model selection (IMs)°using JAGS
P([Sa 53) — P(IS>P(5S)
P(Bs) = N(0,0p ) with alarge o3,
P(Is) = Bernoulli(p; ) an indicator variable with p; set empirically
Note: for SAEMpr and IMs the SNPs are centered and standardized

e Evaluation

— explore association on 3 parameters: Cl, V. and Q on 200 simulated data sets

— true positive (TP) = any significant SNP which is correlated with a causal variant with an r2 > 0.05

e Results
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MOTIVATING REAL CASE STUDY

e Pharmacogenetic data
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— 129 patients on up to 3 occasions with 196 markers
Chromosome 3 7 19
Gene NR1/2 (PXR) ABCB1 (P-gp) CYP3A5 | CYP3A4 CYP2A6 | CYP2B6
Number of markers 49 63 1 36 1 47
— 218 missing polymorphisms with a maximum of 7 per subject)

e Analyses

—one compartment model with 1st-order absorption and elimination
— inter-individual and inter-occasion variability on clearance

— adjustment for rs3745274 polymorphism on CYP2B6

— methods to select genetic markers and handle missing data:

* stepwise procedure on empirical Bayes estimates with missing data removed ’

* Indicator Model selection with missing data imputed in JAGS from Binomial with empirical allele fre-
quency

e Results

— stepwise procedure — Indicator Model selection
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CONCLUSIONS

e |Ms initial simulation study results not yet competitive

— Future works: other indicator-based model selection and shrinkage prior on genetic effect sizes
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