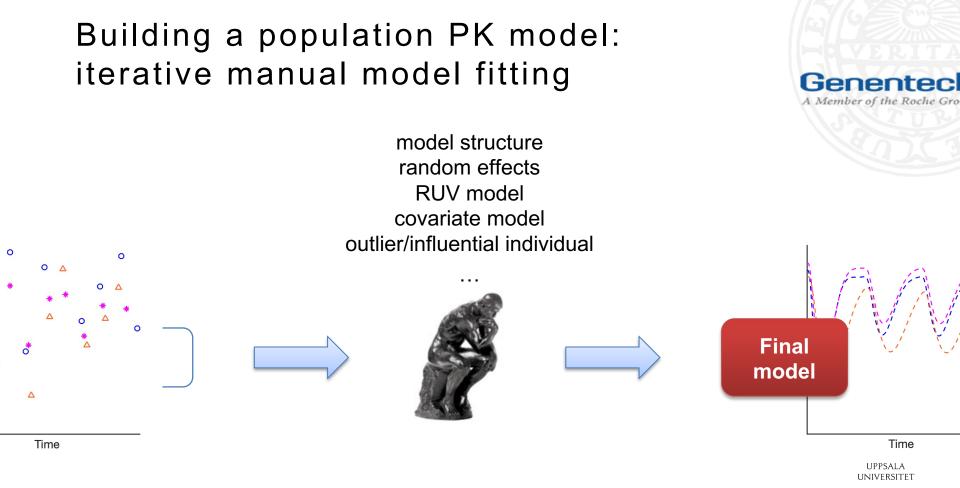
Development of a Tool for Fully Automatic Model Development (AMD)


PAGE, June 29th, 2022

Xiaomei Chen¹, Alzahra Hamdan¹, Shijun Wang¹, Tianwu Yang¹, Rikard Nordgren¹, Stella Belin¹, Zhe Huang¹, Simon J. Carter¹, Simon Buatois², João A. Abrantes², Andrew C. Hooker¹, Mats O. Karlsson¹

¹Department of Pharmacy, Uppsala University

²Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland

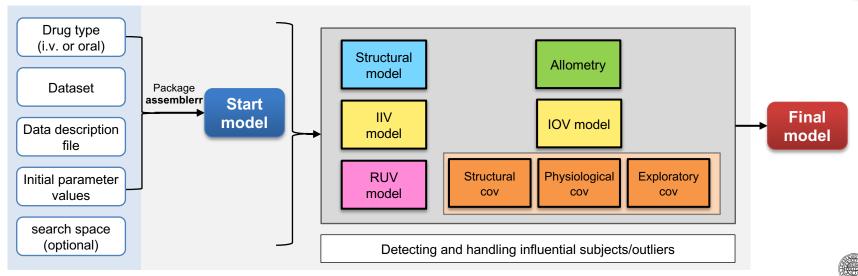
Building a population PK model: Automatic Model Development (AMD)

Dataset

model scope search algorithm selection criterion error handling results output

The **full** AMD tool is based on newly developed methods and our previous tools/methods

assemblerr automatica		automatically generate model code for NONMEM	
	scm	stepwise covariate model building	
	resmod	screen extended RUV models by modeling CWRES data	
	new methods	newly developed methods for AMD	



Workflow of the full AMD tool

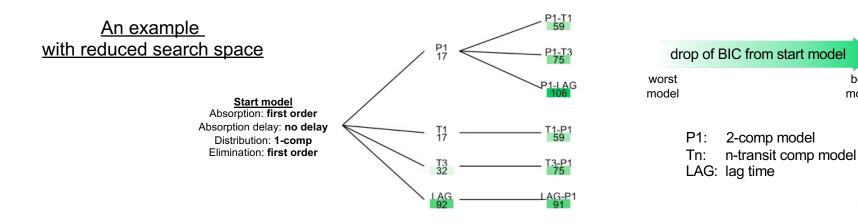
<u>Input</u>

Pharmpy: automatic model development

UPPSALA UNIVERSITET

AMD modules in Pharmpy/pharmr can be used in the AMD workflow or separately

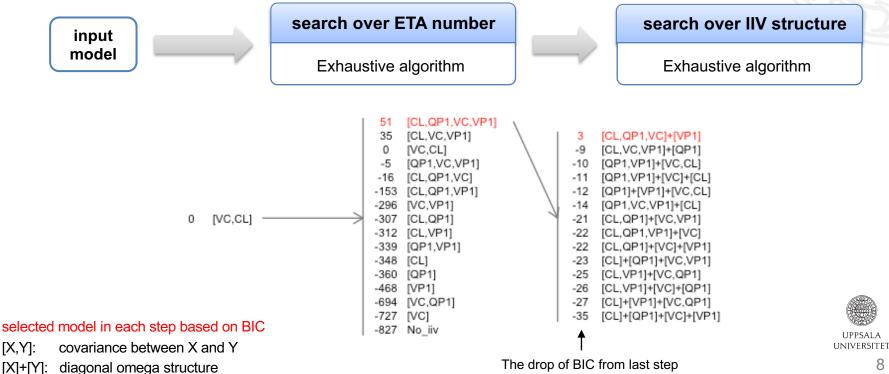
	Module	Search Algorithm	Selection criterion	
ſ	Structural model*	Exhaustive stepwise	BIC ¹	2
	IIV model	2-step exhaustivenumber of etasomega matrix structure	BIC ²	
	RUV model	 3-stepwise resmod³ combined model, power model, IIV on RUV, time varying model 	Likelihood Ratio Test (LRT)	
	Covariate model	Stepwise covariate model (SCM)	LRT	
	Allometry	User defined allometric model	-	
	IOV model	2-step exhaustive	BIC ²	
	Detecting influential subjects/outliers	Prediction based on artificial neural network		


*For a small molecule PK after oral or i.v. administration

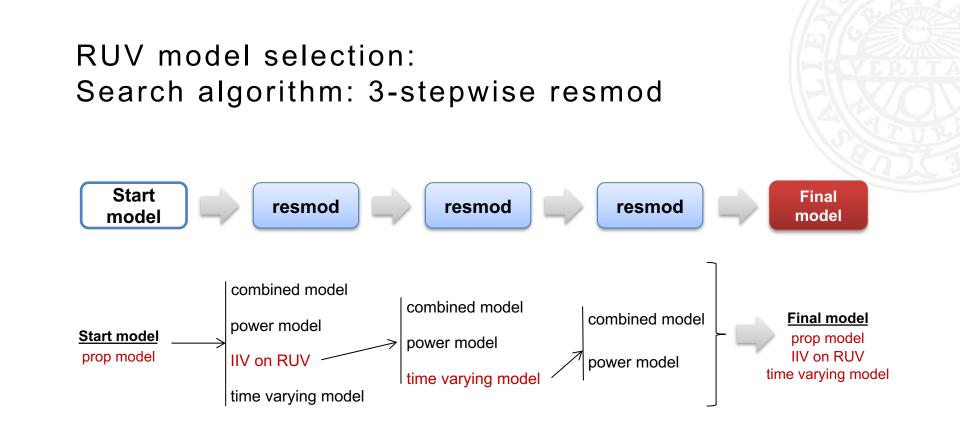
Delattre M, Lavielle M, Poursat MA. J Stat. 2014;8:456–75.
 Delattre M, Poursat MA. Int J Biostat 2016;16:75–83.
 Ibrahim MMA, Nordgren R, Kjellsson MC, Karlsson MO. AAPS J.; 2018;20:1–9.

Structural model selection Search algorithm: exhaustive stepwise

Start r	Absorption	Absorption delay	Distribution	Elimination
	•F0	•no delay	•1-comp	•F0
	•ZO •Sequential ZO and FO	 lag time Transit comp models (n) with depot Modified transit comp models (n) w/o depot 	•2-comp •3-comp	•ZO •Michaelis-Menten •FO with MM



UPPSALA


best

model

IIV model selection Search algorithm: 2-step exhaustive

8

selected model in each step based on p-value of LRT

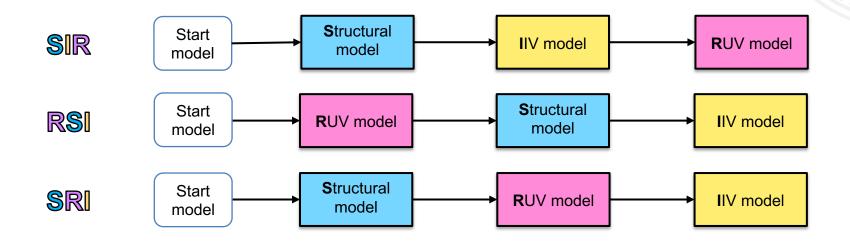
The questions we want to answer through the initial evaluation

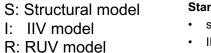
Can the AMD tool be successfully run on real data?

What is the quality of the final model selected by the AMD tool?

What is the impact of the selection order?

How fast is it?


The AMD tool evaluation on 10 datasets

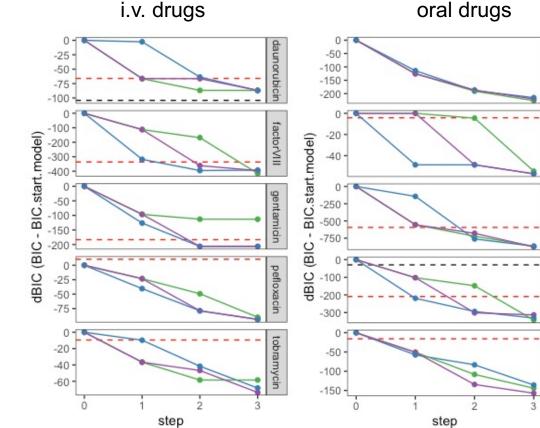

Drug	Administration	Number of subjects	Number of observations
gentamicin	<i>i.v</i> .	210	574
daunorubicin	i.v.	41	112
factorVIII	i.v.	34	714
pefloxacin	i.v.	74	337
tobramycin	i.v.	155	388
desmopressin	oral	28	373
lopinavir	oral	30	315
melagatran	oral	167	1177
moxonidine	oral	73	1006
warfarin	oral	32	246

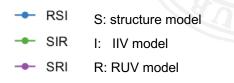
3 orders of model selection were tested for the impact of the order

1:

Start model

structural model: 1-comp model with 1st-order elimination (and 1st-order absorption)


IIV model: [CL, V] or [CL,V]+[MAT]


RUV model: proportional model ٠

The 3 orders gave similar BIC

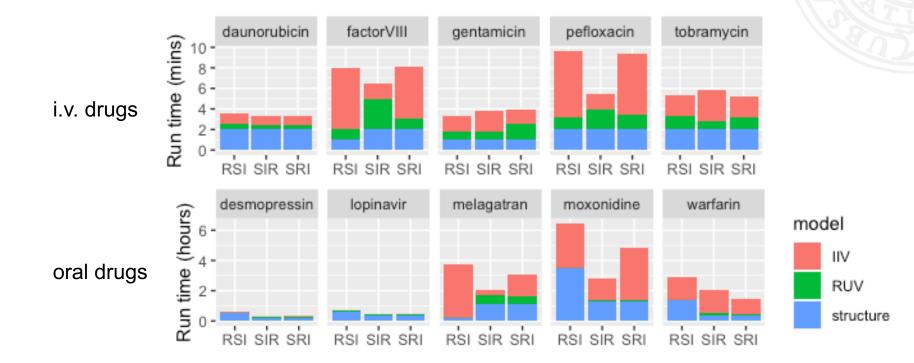
i.v. drugs

desmopress

lopinavir

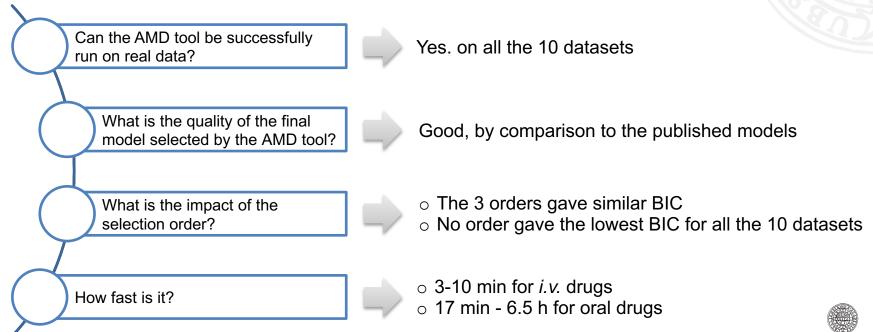
melagatran

moxonidine


warfarin

- Published model on normal scale data
- +Published model on log scale data

*The modified published models with only model structure, IIV, and RUV +Some published models were originally fitted to log-transformed data



The AMD running time: i.v. drugs 3-10 min; oral drugs: 17 min-6.5 hours

Summary of the initial evaluation

Properties of the AMD tool

- Systematic, extensive, objective, flexible, model building
- Requires a good knowledge of relevant model scope
- Allows evaluation and improvement of standard model building practices
- Avoids human coding errors
- Sensitive to software bugs
- Frees modeler's time for other tasks

Development status

Done
Ongoing
To do/Under consideration

Module	Implemented	Initial testing on 10 datasets	Method improvement	
Structural model			Additional modules (PKPD etc.)	
RUV model			Automatic selection of normal vs log-scale	
IIV model			More efficient search algorithm and method;	
IOV model			Semi-parametric distributions	
Allometry				
Covariate model			More efficient search algorithms and method	
Influential subjects/outliers			Allow AMD actions based on such results	
AMD workflow with all the modules			Allow more selection criteria; Extensive testing;	

UPPSALA UNIVERSITET

Welcome to our AMD posters

- S-07 Entire meeting Rikard Nordgren:
 - Pharmpy: a versatile open-source library for pharmacometrics
- IV-30 Thursday 15:00 Alzahra Hamdan
 - Automatic Development of Pharmacokinetic Structural Models Pharmpy Model Search Tool
- IV-11 Thursday 15:00 Simon Carter
 - The development of artificial neural networks for the prediction of influential individuals and outlying individuals and their application during the model building process
- IV-31 Thursday 15:00 Zhe Huang
 - Comparison of PK models using normal and log-transformed scale data
- I-01 Wednesday 9:45 João A. Abrantes
 - ADaMO: End-to-end automation of Pharmacometric modelling in drug development, from dataset building to output generation

If you want to use our AMD and other Pharmpy tools

- Pharmpy/pharmr is available in Python and R
- Download the most recent version: <u>https://github.com/pharmpy</u>
- Pharmpy manual: https://pharmpy.github.io

Acknowledgement for tool testing and feedback

Roche

Emilie Schindler

Franziska Schädeli Stark

Nicolas Frey

Sylvie Retout

Valérie Cosson

This work was supported by F. Hoffmann-La Roche Ltd., Basel, Switzerland.

Thank you for listening!

Questions?

