

Influence of the ratio of the sample sizes between the two stages of an adaptive design: application for a population pharmacokinetic study in children

le la santé et de la recherche médica

Cyrielle Dumont ⁽¹⁾, Marylore Chenel ⁽²⁾, France Mentré ⁽¹⁾

(1) INSERM UMR738, University Paris Diderot-Paris 7, Paris, France

(2) Department of Clinical Pharmacokinetics, Institut de Recherches Internationales Servier, Suresnes, France

CONTEXT

PHARMACOKINETIC (PK) STUDIES IN CHILDREN

- Conducted in patients
- Limitation on the blood volume which can be taken in children
- Mainly analysed by nonlinear mixed-effect models (NLMEM) [1,2]

CHOICE OF THE PHARMACOKINETIC (PK) DESIGN

- Balance between number of subjects and number of measures/subject, choice of sampling times
- Based on the calculation of the Fisher information matrix (M_F) and the optimization of its determinant $(det(M_F))$ [3,4]
 - Implemented in several software as PFIM in R [5,6]
 - Depends on the model and parameters for NLMEM

EVALUATION

- Relative root mean square errors (RRMSE) for each design and each parameter
- Standardized RRMSE for each design and each parameter: ratio of the RRMSE and the RRMSE of ξ^*

ADAPTIVE DESIGN FOR NLMEM

• Local design often used: based on *a priori* values of parameters Alternatives:

• Robust design: based on *a priori* distribution of parameters [7]

• Adaptive design [8,9]: data accumulated during the trial are used to possibly modify the aspects of the study

Two-stage design seems to be a good compromise for designing PK studies in children and is easier to conduct in clinical trials

OBJECTIVES

1) To study, by a simulation approach, the impact of two-stage designs on the precision of parameter estimation, when children true parameters are different from *a priori* ones 2) To investigate, by a simulation approach, the influence of the sample size ratio of each stage, when the true and the *a priori* PK parameters differ

METHODS

A pri

Data Y

 Ψ_1 (from Y_1)

Estimation

Figure 1: Two-stage design

TWO-STAGE DESIGN

- Assumption: same elementary design (ξ) for all subjects in a cohort
- Notations
- Ψ_0 : *a priori* parameters
- Ψ^* : true parameters
- ξ_1 : optimized design obtained with parameters Ψ_0 for N₁ subjects

COHORT 1: N1	COHORT 2: N ₂
Model M	Model M ↓ Ψ1
Design	Design optimization
optimization Design ζ1	↓ Design ξ ₂

Data Y1 and Y2

 Ψ_2 (from Y_1 and Y_2)

 $(N = N_1 + N_2)$

Estimation

Mean standardized RRMSE for each design

RESULTS

IMPACT OF THE TWO-STAGE DESIGN

Optimal designs for the second stage (with $N_1 = N_2 = 30$ children)

- Among the ten second-stage designs, six are different and the other are identical

- Designs ξ_2 : closer to ξ^* than to ξ_1

Comparison between fixed and two-stage designs

- Ψ_1 : estimated parameters from data Y_1 with design ξ_1 and N_1 subjects - ξ_2 : optimized design obtained with estimated parameters Ψ_1 for N₂ subjects - Ψ_2 : estimated parameters from data Y_2 , obtained with design ξ_2 for N₂ subjects, and data Y₁

• M_F for a two-stage design

First stage: ξ_1 is the design which maximizes determinant of

 $M_{F}(\Psi_{0}, N_{1}\xi) = N_{1}M_{F}(\Psi_{0}, \xi)$

Second stage: using estimated Ψ_1 , ξ_2 is the design which maximizes determinant of

 $M_{F}(\Psi_{1}, N_{1} \xi_{1} + N_{2} \xi) = N_{1} M_{F}(\Psi_{1}, \xi_{1}) + N_{2} M_{F}(\Psi_{1}, \xi)$

PK EXAMPLE

- Two-compartment PK model with first-order absorption, exponential random effects and proportional error model
- Two vectors of parameters Ψ_0 (*a priori*) and Ψ^* (true)
- -Same variance for all parameters ($\omega^2 = 0.3$)
- -Same proportional error ($\sigma = 0.2$)
- $N = N_1 + N_2 = 60$ children and 5 sampling times per child

Parameters	Ψ_0	$\Psi *$
$k_{a}(h^{-1})$	3.0	14
$CL(L.h^{-1}.kg^{-1})$	1.5	1.0
V_1 (<i>L.kg</i> ⁻¹)	2.0	1.0
$Q(L.h^{-1}.kg^{-1})$	1.0	2.0
V_2 (<i>L.kg</i> ⁻¹)	1.5	2.0

Daramotors	RRMSE (%) (standardized RRMSE)			
Parameters	ξ ₁	ξ*	ξ ₃₀₋₃₀	
ka (<i>h</i> ⁻¹)	160 (7.05)	22.7	27.3 (1.20)	
CL (<i>L</i> . <i>h</i> ⁻¹)	7.17 (1.07)	6.73	5.77 (0.857)	
V1 (<i>L</i>)	25.2 (1.65)	15.3	23.7 (1.55)	
Q (<i>L.h</i> ⁻¹)	27.1 (1.67)	16.2	18.8 (1.16)	
V2 (L)	11.4 (1.00)	11.4	9.73 (0.854)	
ω ² _{ka}	100 (1.21)	82.4	90.4 (1.10)	
ω² _{CL}	17.0 (0.950)	17.9	18.3 (1.02)	
ω_{V1}^{2}	48.0 (1.33)	36.0	38.3 (1.06)	
ω ² _Q	89.9 (1.50)	59.9	71.5 (1.19)	
ω_{V2}^{2}	36.4 (1.17)	31.2	26.6 (0.853)	
σ _{slope}	10.4 (0.765)	13.6	10.8 (0.794)	
Mean standardized RRMSE	1.76	1.00	1.06	

Table 2: Relative RMSE for the extremum designs and for the two-stage design (30-30)

INFLUENCE OF THE SAMPLE SIZE RATIO BETWEEN THE TWO STAGES

Paramotors	RRMSE (%) (standardized RRMSE)			
Parameters	ξ ₁₀₋₅₀	ξ ₃₀₋₃₀	ξ ₅₀₋₁₀	
ka (<i>h</i> -¹)	30.3 (1.33)	27.3 (1.20)	32.8 (1.44)	
CL (<i>L.h</i> ⁻¹)	7.07 (1.05)	5.77 (0.857)	4.88 (0.725)	
V1 (<i>L</i>)	19.3 (1.26)	23.7 (1.55)	21.1 (1.38)	
Q (<i>L.h</i> -1)	21.2 (1.31)	18.8 (1.16)	19.2 (1.19)	
V2 (<i>L</i>)	12.3 (1.08)	9.73 (0.854)	11.4 (1.00)	
ω_{ka}^{2}	86.3 (1.05)	90.4 (1.10)	82.6 (1.00)	
ω^{2}_{CL}	30.6 (1.71)	18.3 (1.02)	21.4 (1.20)	
ω^{2}_{V1}	23.5 (0.653)	38.3 (1.06)	37.1 (1.03)	
ω_{Q}^{2}	78.2 (1.31)	71.5 (1.19)	68.0 (1.14)	
ω^{2}_{V2}	34.1 (1.09)	26.6 (0.853)	34.3 (1.10)	
σ_{slope}	11.0 (0.809)	10.8 (0.794)	8.14 (0.599)	
1ean standardized RRMSE	1.15	1.06	1.07	

Table 3: Relative RMSE for three two-stage designs

 studied (10-50, 30-30, 50-10)

- Poor results (large RRMSE) for ξ_1 compared to these of ξ^*
- Much better results for two-stage design than *a priori* design (ξ_1)
- Results of two-stage design close to fixed optimal design with true parameters (ξ^*)
- Satisfactory results in terms of RRMSE for the three two-stage designs studied
- Results globally similar for the three cases studied

• Optimal design:

For Ψ_0 : $\xi_1 = 0.083$; **1**; 2; **5**; 12 For Ψ^* : $\xi^* = 0.083$; 0.33; 0.75; 2; 12

* ξ* design Figure 2: Mean profiles in semi-log scale

SIMULATION STUDY

• Parameters for simulation: Ψ^*

- Estimation of parameters using SAEMIX [10] in R
- Design optimization with PFIM in R
- Fixed design:
- Simulation of 100 trials with design ξ_1 and 100 with design ξ^* for N = 60 children
- Two-stage design
- 10 simulations of the first cohort with N₁ children
- 10 simulations with N₂ children (N = N₁ + N₂ = 60 children) for each design $\xi_2 \rightarrow 100$ trials - varying N_1 and N_2 (30-30, 10-50 and 50-10)

[1] Mentré F, Dubruc C, Thénot JP. Journal of Pharmacokinetics and Pharmacodynamics, 2001; 28: 299-319.

[2] Tod M, Jullien V, Pons G. *Clinical Pharmacokinetics*, 2008; 47: 231-243.

[3] Mentré F, Mallet A, Baccar D. Optimal design in random-effects regression models, *Biometrika*, 1997; 84: 429-442.

[4] Bazzoli C, Retout S, Mentré F. Fisher information matrix for nonlinear mixed effects multiple response models: Evaluation of the appropriateness of the first order linearization using a pharmacokinetic/pharmacodynamic model. Statistics in Medicine, 2009; 28: 1940-1956.

[5] Bazzoli C, Retout S, Mentré F. Design evaluation and optimisation in multiple response non linear mixed effects models : PFIM 3.0. *Computer Methods and Program in Biomedecine*, 2010; 98: 55-65.

CONCLUSION

- Two-stage designs are a good approach for PK study: the results are satisfactory even if the *a priori* parameters are wrong (involving a poor design and therefore poor results) • Two-stage designs are easier to conduct and could be more efficient than fully adaptive design
- No clear influence of the ratio of sample sizes between cohorts: more extreme cases should be studied
- Perspectives:
- To create an automatic connection between SAEMIX and PFIM
- To increase the number of simulations
- To apply this methodology for other examples

[6] www.pfim.biostat.fr

[7] Foo L.K, Duffull S. Adaptive optimal design for bridging studies with an application to population pharmacokinetic studies. Pharmaceutical Research, 2012; 29: 1530-1543.

[8] Federov V, Wu Y, Zhang R. Optimal dose-finding designs with correlated continuous and discrete responses. Statistics in Medicine, 2012; 31: 217-234.

[9] Dragalin V. Adaptive designs: terminology and classification. *Drug Information Journal*, 2006; 40: 425-435. [10] http://cran.r-project.org/web/packages/saemix/index.html