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Objective
Typical drug-effect models directly link exposure to antibiotics to bacterial population growth. They
rarely account for known mechanisms of action of the drug — which are particularly relevant for the
analysis of synergistic or antagonistic effects of drug combinations. Our aim was to develop a generic
pharmacodynamic model which allows for mechanistic integration of antimicrobial drug effects on the
cellular level to predict the impact on bacterial growth.
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• Two sub-populations: Normal (n) and persisting
cells (p), which switch their phenotype with rate
constants µnp and µpn

• Antibiotic concentration cdrug acts on some
death model and some growth model

• Transition constant λ is predicted by some tran-
sition model

• Growth is limited by carrying capacity Nmax

dn/dt = µgrowth(1− (n + p)/Nmax)n− µdeathn− µnpn + µpnp

dp/dt = µnpn− µpnp

dµgrowth/dt = λ(µgrowth,adapted − µgrowth)

Death model
Based on data in [11], we assumed, that the baseline
probability for death per cell is constant for i) all gen-
erations (no senescence) and ii) all phases of the cell
cycle with Kdeath = 0.01.

µdeath = Kdeath · µgrowth,control +
Emax,death·c
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Growth model
The mechanism of action is exemplified for protein biosynthesis inhibitors tetracycline and chloram-
phenicol, which inhibit translation during the elongation phase. They share the kinetic properties of long
binding times to their ribosomal targets (several minutes) — compared to the typical time a ribosome
spends in the elongation phase (≈ 280 · 0.04 s for E. coli).

The growth model in-
cluded cell states and
corresponding growth
rate constants. A delay
for adaptational pro-
cesses was predicted by
a transition model. The
partitioning of the cell
state is in accordance with
a RelA and SpoT homo-
logue regulation network
(relaxed response).
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Parameter abbreviations and units: βr fraction of active ribosomes; cp peptide chain elongation rate per active ribosome in aa/s; er ribosomal efficiency in aa/s (= cpβr); Nr

number of 103 ribosomes per cell; Pc,µg protein mass per 109 cells in µg; Rc,µg RNA mass per 109 cells in µg; βp fraction of active RNA polymerase in %; Ψs fraction of active
RNA polymerase synthesizing rRNA and tRNA in %; αp fraction of total protein that is RNA polymerase in % ; Mc cell dry weight per 109 cells in µg; nucl./prib. ribonucleotide
residues per rRNA precursor; aa/pol. amino acid residues per RNA polymerase core; ft fraction of stable RNA that is tRNA; cs stable RNA chain elongation in nucl/s; nucl./rib.
ribonucleotide residues per 70S ribosome; fs fraction of RNA that is stable RNA.

A functional link between doubling
time τ = 60 log(2)/µgrowth and cell
state descriptors (blue line) was
estimated based on data in [1]
(red crosses) and identity condition
µ = f (CellState(µ)) with µ defined in
step (E).
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We applied Liebig’s law of the minimum by deriving the inverse of the most limiting cell state descriptor
in CellStateperturbed — for chloramphenicol and tetracycline this is the ribosomal efficiency (er = βr · cp)

µgrowth,perturbed = 60 log (2)/f−1
er (er,perturbed)

In the perturbed cell state, the fraction of active ribosomes βr was modulated by cdrug with an Emax
model. The remaining active ribosomes could benefit from increased amino acid pool levels and thus
resulting higher peptide chain elongation rate cp, limited by cp,max.
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In the adapted cell state, RNA related parameters
exhibited a relaxed response linked to cp,perturbed.
RNA polymerase related parameters followed a
stringent response linked to µgrowth,perturbed. Param-
eters directly lowered by drug action remained on
the perturbed level.

µgrowth,adapted =
60

[(nucl./prib.)(aa/pol.)/(1− ft)]0.5
(Ψsαpβpβrcscp)

0.5

Transition model
The aim is to predict the time needed for transit between pre-shift and post-shift growth rate.

• anorm describes the gradual
progress of a single cell in
the cell cycle and was ideally
distributed with F = 21−anorm

• A re-scaled and shifted post-
shift distribution gave initial
values for a transit compart-
ment cell cycle model

•Nc and µtrans was given by
the known variance of the
resulting Erlang distribution
(σ2 = Nc/µ

2
trans)

• Decay rate of the envelope
of fosci(t) gave transition rate
constant λ
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Results

Predictions of lag between increase in cell number
and population mass
In this experiment additional nutrients were added into the growth
medium at t = 2 h. A shift-up lead to increasing mass per typical
cell Mc. The transition model predicted different lag times for mass
increase (m = nMc(µ)) and increase in cell number (n).

µ in 1/h

M
c in

 µ
g 

pe
r 

ce
ll

0.4 1.0 1.7
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−6

time in h

re
la

tiv
e 

in
cr

ea
se

0 2 4 6 8
10

0

10
1

10
2

10
3

n
m

tlag,n

tlag,m

For E. coli B/r, with parameters estimated from data in [1] (red
crosses), we can quantitatively predict ∆tlag ≈ 1 h.

Prediction of septation dynamics of B. subtilis
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Population dynamics (N ) were fitted
by a logistic growth function with lag
time. Its derivative gave pre- and
post-shift growth rates.
• Experimental data as red crosses

from [3]
• Predictions from the transition

model for 10 post-shift growth
rates as blue lines

Oscillations in age distribution faded
out ≈ 4 h after start of transition.

Prediction of population dynamics for E. coli ex-
posed to tetracycline

Two drug specific EC50 parameters were estimated in a training data
set for E. coli B/r and static concentrations up to 8 µg mL−1 of tetra-
cycline (color coded in training data set from [2].
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Training data set Validation data sets

For validation purposes, data from different strains (B/r, ATCC
25922, ATCC 51A0150 and MG165) and growth media (Antibiotic
medium 3 and Mueller Hinton) were used [2, 5, 6, 8, 9, 7, 4]. Drug
specific parameters were scaled accordingly for each strain. We see
very good agreement in these data sets.

Predictions of intracellular RNA concentration for
E. coli exposed to chloramphenicol

RNA concentrations (cRNA) during exponential growth were mea-
sured in several growth media and resulting growth rates µnet
[10]. Chloramphenicol was added in various concentrations.
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• Experimental data as color-
coded circles and connected
by black lines, if conducted in
the same growth medium

• Predictions from the growth
model as color-coded lines

Linear increase of cRNA
with µnet is captured by
f = CellState(µ) and changing
steepness is sensitive to max-
imal peptide chain elongation
rate cp,max.

Summary
Exploitation of cell state — growth rate interrelation enables flex-
ible integration of antibiotic drug effects. Separation of sys-
tem and drug specific parameters allows transfer of information
between experiments. Biological interpretation of parameters
can guide follow-up experiments and give insight into cellular re-
sponses to exposure to antibiotics.
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