
Incorporating model structure uncertainty  
in model-based drug discovery  

 

Background 

Pharmacokinetic and pharmacodynamic (PKPD) modeling underpins drug discovery 

decision making by providing a quantitative system understanding and dynamical 

predictions with accompanying uncertainties. Ideally, a theoretical model can be 

derived from first principles. However, in practice, the model structure is defined from 

prior information and model parameters are inferred in two steps: first, initial guesses 

are derived, e.g., from graphical methods in combination with prior knowledge, and 

then the parameters are optimized by numerical methods, e.g., the least-squares 

method.  In some cases there is high confidence in the choice of model structure. 

Then it is reasonable to calculate uncertainty in the parameter estimates (e.g., a 

point estimate and a 95 % confidence interval for each parameter). 

However, in many cases there is uncertainty in the choice of model structure – a 

theoretical model structure cannot be derived and several model structures are 

plausible. In these cases, it is reasonable to define a model space of relevant model 

structures and then selecting a model from this space. Such decisions are based on 

a model selection criterion, and there are several fundamentally different ways of 

doing this, e.g., penalizing model complexity in the objective function (AIC, BIC, 

MDL), F-tests for a model space of nested models, and cross validation techniques. 

In the drug discovery phase, several compounds are screened in an in vivo PD 

model. The turnover of pre-clinical PKPD data analysis and modeling is usually short 

and in depth structural model selected are seldom fully explored. In addition, a 

fundamental difficulty is that test compound data is sparse. This makes it hard to 

select the most appropriate model structure even without time constraints. 
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Results 
Two main obstacles for proper model selection in drug discovery are time constraints 

and sparse data. Using PKPD data from a drug discovery project, we addressed 

both issues.  

To incorporate structure uncertainty we defined a model space including a space of 

PD structural models, and weighed the set of feasible models based on their 

posterior probability. In particular we analyzed twelve compounds from a lead 

optimization project where potency ranking traditionally was done using a receptor 

occupancy model with elementary reactions. For this data set, taking model structure 

uncertainty into account shifts the ranking of compounds with respect to potency 

(Figure 2). 

Concerning the time constraint, we accelerated model selection by implementing a 

user-friendly computational process with input data in form of an Excel file and output 

in form of a PowerPoint presentation file. Taken together, we could rapidly obtain 

robust estimation with uncertainty. 

 

Conclusions 
Model structure uncertainty, and not only parameter uncertainty for one single model 

structure, can be incorporated in drug discovery practice. This implies improved 

robustness in model selection, which is particularly important when data is sparse. A 

more realistic estimation of model prediction uncertainty can then be expected, which 

is pivotal in decision making such as compound selection. 

Methods 

Our approach was developed and tested using mice data for twelve compounds 

(data for one experiment is depicted in the upper part of Figure 1). Uncertainty in 

model structure was considered by evaluating several models from a model space 

using a model selection criterion. In this study we have used AIC. Model based 

predictions were generated from all models in the model space (Figure 1). Models 

were then weighted using the posterior model probabilities from the calculated 

Akaike weights (see Box 1 for details).   

The time constraint of model selection was addressed by automatization of time 

consuming modeling steps. 

Figure 2. Target occupancy versus steady state concentration for twelve compounds The upper plot is 

based on fitting a  receptor kinetic model with elementary reactions to data. The lower plot is obtained 

by weighing (posterior probabilities based on AIC) all models from the model space. Note, for instance, 

how compound 6 (black solid line) falls from being ranked as the 3rd most potent to being ranked as the 

8th –10th most potent compound. 
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Figure 1. Typical experimental data (upper), workflow for model ranking (left) and model space 

composition (right). For compounds in the considered lead optimization series, both receptor kinetic 

models and distribution rate limited models are plausible. 
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Objectives 

The objective of this study is to improve standard model-based predictions from 

preclinical data sets by incorporating both the structure and parameter uncertainties, 

and not only parameter uncertainty, in an approach that is useful in practice. 
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Box 1. Calculating posterior probability using Akaike weights (see, e.g., Bonate (2006)). 

pi NLLAIC  22

Consider a model space of N models. For each model i from the model space, AIC is calculated 

as 

where LL is the log likelihood, and Np is the number of parameters in model i. Then, AIC 

differences with respect to the smallest (best) AIC is calculated as 

AIC differences represent the loss of information relative to the best model in the model space. 

Akaike weights are then calculated as 

In a Bayesian sense, wi can be interpreted as the posterior probability of model i. 
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