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Outline
- The Hazard: Biological basis for survival
- Types of Event and their Likelihood
» Exact time
» Right censored
» Interval censored
» Count data
- Joint Modelling of Continuous and Event Data
Slide This landmark study led to the introduction of
3 How Notto U nderstand statins with a major impact on cardiovascular

Time to Event
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Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in
4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S).

Lancet. 1994;344:1383-89.
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morbidity and mortality worldwide.

However, this Kaplan-Meier plot shows that
statins don’t seem to have any effect on
survival until at least a year after starting
treatment.

As far as | know there has never been any
good explanation of why the benefits of statins
are so delayed but when properly analysed
this kind of survival data can describe the time
course of hazard and give a clearer picture of
how long it takes for statins to be effective.
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Why do women live longer
than men?
Slide http://www.allowe.com/Humor/whymendieyou
5 nger.htm
RESS =K
Slide The hazard describes the death rate at each
6
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Figure 2.6 Hazard functions for all cause mortality for the US population in
1989. White males ( ); white females (------ ); black males (- - - - - - ),
black females (

)

“... a bathtub-shaped hazard is appropriate in populations followed from birth.”

Klein, J.P., and Moeschberger, M.L. 2003. Survival analysis: techniques for censored and truncated data. New York:

Springer-Verlag.
“The bathtub curve”
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instant of time. The shape of the hazard
function over the human life span has the
shape of a bathtub.

US mortality data shows the hazard at birth
falls quickly and eventually returns to around
the same level by the age of 60. The hazard is
approximately constant through childhood and
early adolescence. The onset of puberty and
subsequent life style changes (cars, drugs,...)
adopted by men increases the hazard to a
new plateau which lasts for 10 to 20 years.

It would require a time varying model to
describe how development (children) and
ageing (adults) are associated with changes in
death rate.
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Slide . . - The elimination rate constant is the hazard of
7 Why Pharmacokineticists are a molecule ‘dying.
. Elimination rate constants and hazards always
T| me '[O Eve nt EXpertS have units of 1/time
Unlike most drugs the hazard is not usually
. What is an elimination rate constant? constant (first-order elimination’) but may
) ) . o change with time (‘time dependent clearance’)
» Proportionality factor relating elimination to amount of drug or with the number of people (‘concentration
dependent clearance’)
RateOut = k - Amount
- What is a hazard?
» Proportionality factor relating death rate to number of people
still alive
RateOut=h-N, e
- Everything you know about elimination rate constants
applies to hazards!
Slide The event rate is frequently scaled to a
8 standard number of persons e.g. death rates
I per 100,000 people.
P K and SU rVIVaI Hazard models are more typically scaled to a
single person.
Pharmacokinetic models are scaled to the
Drug Events dose. In this example a unit dose is assumed
for the time course of concentration.
Rate of loss dA dN
N=people alive —=—ky-A E =-4A-N
A=molecules remaining dt
Hazard kel A
Integral AUC Cumulative Hazard
Non-parametric Non-compartmental | Kaplan-Meier
Time Course C(t) = e)(p(_kel .t) S(t) — exp(—l-t)
Slide The hazard function is associated with a
9 Some examples Of distribution of event times. Some common

baseline hazard functions

Distribution Hazard Function A,t) Survivor Function P(T>t)
| A0=4 g —
Exponential -
| AO=Foe . e
Gompertz . () :5
Weibull . e
: Jot) =B, -eA"0 | ..

o os 2 25 3 as s o 05 1 15 2 25
time time
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distributions have names e.g. Gompertz (one
of the first mathematicians to explore survival
analysis).

Standard baseline hazard functions used by
statisticians are typically chosen for their
mathematical simplicity rather than any
biological reason. (comment from Marc: not
true and not relevant at all)

The biology of event time distributions is
largely based on descriptive and empirical
approaches. However, the hazard is the way
to introduce biological mechanism in order to
aid understanding of the variability of time to
event distributions.

The Weibull distribution is traditionally written
as a power function of time. It can be
reparameterized (as shown here) to show it's
close connection to the exponential
distribution (when B, is zero) and the
Gompertz distribution (In(time) instead of
time). (comment from Marc: “technical”
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comment of little interest for this tutorial)

Note that the Weibull has the often non-
biological property of a zero hazard when time
is zero. (comment from Marc: not true and not
relevant)

Slide
10

Proportional hazards model

A(t) = AO(t) . eﬂl'xl+ﬂ2~xz...+ﬂn.xn

A1) : baseline hazard function,
* parametric (constant, Weibull, Gompertz,...)
* non parametric (Cox model)

X1, X, ..., X, independent variables (covariates)

Exponentiation of the explanatory variable function ensures
non-negative hazards

ENHG Hoford, M Laviele 2011, all rghts reserved.

The explanatory variable function is quite
empirical. This form is used because there are
some simple solutions for integrating the
hazard and the exponential form ensures that
the hazard is always non-negative.

The Cox proportional hazards model is a
semi-parametric version of this parametric
model.

The Cox model does not estimate Aq(t) but
assumes it is similar for all cases of the
explanatory variables. (Comment from Marc:
this remark is incorrect and should be
replaced by “*Sir David Cox observed that if
the proportional hazards assumption holds
(or, is assumed to hold) then it is possible to
estimate the effect parameter(s) without any
consideration of the hazard function”.)

Slide
11

Example of proportional
hazards model

ﬂd(t) — ﬂo(t) . eﬂl-lerﬂSEXSEX...Jrﬂn-Xn

If the SEX is O for females and 1 for males and
the value of Bgey is 0.693 then the hazard ratio
for men is 2 (compared to women).

ENHG Hoford, M Laviele 2011, all rights reserved.

The coefficients of the exponential function
are convenient for describing how the hazard
varies with the explanatory variable.
Exponentiation of the coefficient gives the
hazard ratio for the effect of the explanatory
variable.
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Slide Marc: | removed the word ‘relative’ before
12 . likelihood in the definition of pdf. The pdf IS
Hazard and SUYVlvaI the likelihood. There is nothing ‘relative’.

Hazard function y) (t) Hazard is the instantaneous rate of the event.
The hazard model can be of any form but the

hazard cannot be negative.

Cumulative hazard function A(a,b) = fi(t)dt As time passes the cumulative hazard
predicts the risk of having the event over the

interval O-t.

Survival function P(T >t) =e A The risk in any interval a-b is obtained by

integrating hazard with respect to time over

this interval a-b. In case of multiple events, the

p(t) = ﬂ(t)e‘/\(toi) risk in interval a-b is the expected number of

events in this interval.
The probability of survival (not having the
) o ) event) can be predicted from the cumulative

Cumulative distribution function  P(T <t) = J:p(s) ds hazard. This is called the survivor function.
The probability density function (pdf)

describes the likelihood for this random event

Probability density function

(to : start of the experiment)

R — to occur at a given time. It can be calculated
from the survivor function and hazard at that
time.

The cumulative distribution function, i.e.
P(T<t), is the integral of the pdf between 0 and
t.

Slide Single event observations (e.g. death) have
13 . . . just one observation event.
Likelihood of a Slngle event The likelihood of a single event is the pdf.
Note that this is not the probability of the event
at that time.

1) Exact time of event

t,=0 T=a time

likelihoodof theeventT = a

p(a) = A(a)e "%

ENHG Holford, M Laviele 2011, all fights reserved.
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Slide If the event is not observed at the end of the
14 . . . experiment, it is “right-censored” : it will
leenhOOd Of a Slngle event (maybe) occur aftert_end = a
The likelihood of this right-censored event is
P(t>a), i.e. the survivor function computed at
2) Right censored event time t=a.
?
i IIII'I’IIIIIII'I’IIIIIIIII’IIIIIIIII'I’II.II
t,=0 teng=a T>a time
likelihoodof theeventT > a
P(T >a)=e "0
Slide Assume now that the only information
15 available is that the event occurred in an

Likelihood of a single event

3) Interval censored event

| / |
I ! | .
t,=0 a a<T<b b time

likelihoodoftheeventa < T< b
P(T >a)«P(T <b|T >a)
\

—-A(0,a) —-A(a,b)
e x (—e )

interval a-b: this is called an “interval censored
event”.

The likelihood of this interval censored event
is the probability that the event occurred
between a and b

¢ A first approach for computing this
probability P(a<T<b) decomposes this
probability as follows:
P(a<T<b) = P(T<b) — P(T<a)

= 1-exp(-Lambda(0,b))-1+exp(-
Lambda(0,a))

= exp(-Lambda(0,a)) x (1-exp(-
Lambda(a,b)))

This first approach is only valid for single
events and cannot be extended to repeated
time to events (RTTE)

® A second approach for computing this
probability P(a<T<b) decomposes the
information a<T<b into two successive
observations:

¢  Attime a, the event was not
observed yet: we know that
T>a. Then, the first component
of the likelihood is the
probability P(T>a) = exp(-
Lambda(0,a))

®  Attime b, the event was

observed: we know that T<b,
given the previous information
that T>a. Then, the second
component of the likelihood is
the conditional probability
P(T<b|T>a), i.e. the cumulative
distribution function computed
on the interval a-b: 1-exp(-
Lambda(a,b))

Then,

P(a<T<b) = P(T>a) x P(T<b|T>a)

= exp(-Lambda(0,a)) x (1-exp(-
Lambda(a,b)))
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We will see that this second approach can
easily be extended to repeated time to
events (RTTE)

Slide Usually, DV=1 is used for an exact time event
16 . . and DV=0 for a right censored event.
EnCOdlng Slngle Events In the case of an interval censored event, we
need an additional coding for the end of the
interval. We will use DV=2 in this tutorial.
Dv=1
Exact time of event | %
T=a
DV:|O
. \
Right censored event | A
T>a
DVI:O DV|=2
Interval censored event { AR
T>a T<b
Slide A record at time=0 is needed to define when
17 . . the hazard integration starts.
Encodlng Slngle Events Remark: the MDV data item is required by
NONMEM: it is a reminder that that the
o | Tme | ov | MOV Comment Likelihood interval censored event computes the
¢ ) likelihood from two observation events
1 0 . 1 Start observing - (MDV=O).
1 50 1 0| Exact Time Event A(50) e-A©50) This MDV column is not required by
- MONOLIX since the information given by this
2 0 . 1 Start observing - . .
column already exists in the DV column.
2 100 0 0 Censored Event e—A(0,100)
3 0 . 1 Start observing -
3 55 0 0 | Start Event Interval e—A0,55)
3 70 2 0| End Event Interval 1 - e-AG5,70)
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Slide Estimation of the parameters of any hazard
18 Single Event Time Varying Hazard (CP) model can be doqe using this kind of code. It
NONMEM uses ADVANSG to integrate the hazard and
obtain the cumulative hazard. This can be
SESTIN URXBVALTO990 METHOD=COND S e used with the hazard at the time of the event
LAPLACE LIKE DADT (1) —-CL*DCE to calculate the likelihood of right censored,
STHETA PADT (2) “BASHRZTEXE (SETRCPIDCE) exact time and interval censored events.
10 FIX  ; CL SERROR Note that the likelihood for an individual is the
Ooon s CE=A (1) /¥ _ product of each of the contributions. This is
U i CUMHAZ=A (2) ; cumulative hazard . . .
0.1 i BETACP important for interval censored events which
SoMEGA o) e 7 wight censored are described by the likelihood of the right
0 FIX ; PPV_CL CHLAST=CUMHAZ ; start of interval censoring event at the start of the interval
0 FIX ; PPV_V ELSE .
CHLAST_CHLAST ; keep NM-TRAN happy (DV.EQ.0) and_ the interval censored event at
zsm ADVAN=6 TOL=9 ENDIF the end of the interval (DV.EQ.2).
MODEL IF (DV.EQ.1) THEN ; exact time
COMP= (CENTRAL) IO BASHAZAEXD (S0RACE D) Random effects on hazard model parameters
COMP= (CUMHAZ) Y=EXP (~CUMHAZ) *HAZNOW (e.g. BASHAZ and BETACP) are not
ENDIF : i H
SPK IF (DV.EQ.2) THEN ; interval censored estimable with Smgle events.
IF (NEWIND.LE.1) CHLAST=0 Y=1 - EXP(-(CUMHAZ - CHLAST))
CL=THETA (1) *EXP(ETA(1)) ENDIF
V=THETA (2) *EXP(ETA(3))
BASHAZ=THETA (3)
BETACP=THETA (4)
Slide This code will be implemented in MONOLIX
19 . . 4.0. A beta version will be available and
Time Varying Hazard (CP) presented during PAGE 2011.
MONOLIX 4.0
SINDIVIDUAL ;distribution of the individual parameters
default dist=log-normal,
CL, V, BETACP iiv=no, BASHAZ iiv=no
SEVENT ;define the probability distribution of the time-to-event outcome
Cp = PKMODEL(CL,V) ;built-in PK model
lambda= BASHAZ*EXP(BETACP*Cp) ;the hazard function
SOBSERVATIONS distribution of the observations
Death type=event hazard=lambda
STASKS ;tasks to perform
pop_parameters, fisher_information_matrix, graphics list=complete
SINITIAL ;initial values and parameters to estimate
POP_CL init=10 estimate=no,
POP_V init=100 estimate=no,
POP_BETACP init=0.1
POP_BASHAZ init=0.01
Slide Repeated event observations (e.g. seizures)
20 have several observation events.

Extension to repeated events

1) Exact times of events

EINHG Holford, M Laviele 2011, all right reserved.
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Slide A careful calculation of the likelihood of
21 . repeated events is not straightforward... but is
Extension to repeated events possible!
The likelihood of the observations is the joint probability:
Lit) P(T} € [ar, ). Ts € [az.ba)..... Tk € [ag.br]. T > tena)
by by by
flf ' f pltte, .t b Jdtydta, L dbg dtg
K -
= (H[ Pltelte— \})]7 Pl altydiydty, . dty digc
Foo
- H[ Alty)e™ M1t / Mgy e MUtk al gy dby o dige, dbgeg
i tend
H [ Al )ty / Mg gn)e Mo dye
_ (H / Mt )) Ao, tend)
K-1
Slide The same formulas used for exact times of
22 . event and right censored events can be used
EXtenSIOH tO repeated events for repeated events.
1) Exact times of events
| X—X X % R R
to t, ot t; t, ts=teng time
ID TIME DV MDV Comment Likelihood
1 ty 1 Start observing
1 t, 1 0 Exact Time Event k(tl) eAlt ., ty)
1 t, 1 0 Exact Time Event Mtz) eAlty, to)
1 ty 1 0 Exact Time Event Mty) eAl2. )
1 t, 1 0 Exact Time Event Mt,) eAlts . ta)
Right Censored “Alta, t
1 ts 0 0 Event eAlts. ts)
Slide
23

Extension to repeated events

2) Interval censored events

HH—H%WI—H%%

ts=teng time

EINHG Holford, M Laviele 2011, all right reserved.
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Slide For each interval, we have to compute 2
24 . likelihoods: the likelihood when the interval
EXtenS|0n tO re peatEd eve ntS starts and the likelihood when the interval
ends.
2) Interval censored events
| oyl | pgsggyl |y gy gy
‘ |I/I| |I IIII| 7777 17rTTTT
to ot t; t, t5=teng time
ID TIME DV MDV Comment Likelihood
1 to 1 Start observing -
1 t, 0 0 Start Event Interval eAlto. ty)
1 t, 2 0 End Event Interval A(t1 s tz)e—/\(h ,t2)
1 ty 0 0 Start Event Interval eAltz, t3)
1 t, 2 0 End Event Interval A(t3 s t4)e4\(ta 2 ta)
1 t, 0 0 Right CEensolred e-Alta, t5)
ven
Slide Any kind of response, continuous or non-
25 continuous, can be used for estimation by
. . using the joint likelihood computed for each
ExtenS|On '[O J0|nt |\/|Ode|S observation.
- Basic concept
Compute LIKELIHOOD for ANY kind of response
» Predict likelihood of an observation for a continuous
variable (e.g. disease status)
» Predict likelihood of time of event for time to event
data
- All types of response can be combined
» Continuous, categorical, count, time to event
Slide NONMEM (and many other parameter
26 estimation procedures) uses the likelihood to

Applications

- Continuous Response
» Standard PKPD

- Non-continuous Response
» Binary Response
— Awake or Asleep
» Ordered Categorical Response
— Neutropenic adverse event type
» Count Response
— Frequency of epileptic seizures
» Time to Event
— Death
— Dropout

- Joint Response
» Continuous plus non-continuous

EINHG Holford, M Laviele 2011, all right reserved.

guide the parameter search. The likelihood is
the fundamental way to describe the
probability of any observation given a model
for predicting the observation. NONMEM
shields us from the details for common PKPD
models that use continuous response scales
for the observation (e.g. drug concentration,
effect on blood pressure).

A variety of non-continuous responses are
widely used to describe drug effects —
especially clinical outcomes. By computing the
likelihood directly for each of these kinds of
response we can ask NONMEM to estimate
parameters for any mixture of response types.
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Slide The TRT data item indicates if the subject is
27 . receiving active treatment (TRT=1) or not
Joint Model Data (TRT=0).

DVID is used to distinguish between
continuous value biomarker observations (e.g.
D | TME | TRT |DVID | DV | MDV Comment DVID=1 for drug concentration) and event
) observations (e.g. DVID=2).

1 0 0 . . 1 Start observing

1 20 0 1| 674 0 Biomarker

1 30 0 1] 432 0 Biomarker

1 50 0 2 1 0| Exact Time Event

2 0 1 . . 1 Start observing

2 25 1 1| 50.2 0 Biomarker

2 40 1 1| 437 0 Biomarker

2 60 1 1| 135 0 Biomarker

2 100 1 2 0 0 Censored Event
Slide .
28 Example of Joint Model:

Disease Progress and Time Varying Hazard
1) Continuous biomarker 2) Time to event
f(t)=a+bt At)=hefT®
y(t) = f(t)+&(t)
Statistical model:
* [IVonaandb
* Treatment effect on b

Slide . . . This illustrates joint modelling for disease
29 Disease Progress and Time Varying Hazard progress and an event. The event hazard

$INPUT ID TRT DVID TIME DV MDV $E R
$ESTIM MAX-9990 NSIG=3 SIGL=9 CUMHAZ=A(1) ; Cumulative hazard
METHOD=CONDITIONAL DISPRG=INTRI + SLOPI*TIME
LAPLACE
$SUBR ADVAN=6 TOL=9 IF (DVID.EQ.1) THEN ; disease progress
F_FLAG = 0 ; Continuous
$MODEL Y = DISPRG + ERR(1); Disease Progress
COMP= (CUMHAZ) ENDIF
$PK IF (DVID.EQ.2.AND.DV.EQ.0) THEN ; right censored
IF (NEWIND.LE.1l) CHLAST=0 ; Initialize F FLAG = 1 ; Likelihood
Y = EXP(-CUMHAZ)
; Hazard CHLAST=CUMHAZ ; start of interval
BASHAZ = THETA(l) ; Baseline hazard E
BETADP = THETA(2) ; Disease progress effect CHLAST=CHLAST ; keep NM-TRAN happy

ENDIF
; Symptomatic treatment effect

EFFECT = TRT*THETA(3) IF (DVID.EQ.2.AND.DV.EQ.1) THEN ; exact time
F_FLAG = 1 ; Likelihood

;Disease Progress HAZARD = BASHAZ*EXP (BETADP*DISPRG)

INTRI = (THETA(4)+ EFFECT)*EXP (ETA(1) Y = EXP(-CUMHAZ) *HAZARD

SLOPI = THETA(5)* EXP (ETA(2) ENDIF

$DES IF (DVID.EQ.2.AND.DV.EQ.2) THEN ; interval censored

DPRG = INTRI + 1T F_FLAG = 1 ; Likelihood

DADT (1) = BASHAZ*EXP (BETADP*DPRG) ; h(t) Y = 1 - EXP (- (CHLAST-CUMHAZ))

ENDIF

ENHG Hoford, M Laviele 2011, all rghts reserved.

depends on disease progress.

A differential equation is used to integrate the
hazard.

An effect of treatment (TRT) is assumed to
affect the intercept of the disease progress
model which in turn influences the hazard of
the event.

It is useful to be able to save the value of the
cumulative hazard in order to calculate the
likelihood of an interval censored event. In this
example DV=0 is used to indicate the start of
the interval censored event period and the
cumulative hazard at this time is saved in the
CHLAST variable.

The F_FLAG variable is used to tell NONMEM
how to use the predicted Y value. F_FLAG of
0 is the defaulti.e. Y is the prediction of a
continuous variable. F_FLAG of 1 means the
prediction is a likelihood. F_FLAG of 2 means
the prediction is -2*In(Likelihood).
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Slide . . .
30 Disease Progress and Time Varying Hazard
SDATA ;information in the dataset
ID, TRT use=cov type =cat, TIME, DVID, DV, MDV
SINDIVIDUAL ;distribution of the individual parameters
default dist=log-normal,
INTRI, SLOPI cov=TRT, BASHAZ iiv=no, BETADP iiv=no
SEQUATION
DISPRG= INTRI + SLOPE*T
SEVENT
lambda=BASHAZ*EXP(BETADP*DISPRG)
SOBSERVATIONS distribution of the observations
Biomarker type=continuous pred=DISPRG err=constant,
Death type=event hazard=lambda
Slide
- Extension to count data
The exact times of event
| V2 NS Ny VARV LV V2 V2 VAR VIRV]
A AR A A K A A A A A A
to T1 T2T3 T4 T5 TG T7 T8 T9 T10 T11T12
Slide
% Extension to count data
The exact times of event
| V2 VAV Y VIRV Ny Ny Ny VAR VIRV]
I A AKX A A K A A A AA A
to T T, Tl T T To Tip Ty Ty,
are not observed ...
| | | | | | | |
I 17 ] ] I ] | I
t, 4 t, gt ts tg t,
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Slide
33 .
Extension to count data
The exact times of event
VIS VY \ NV VIRV
‘ N ANTA NN N N N VAN ANYAY
to Ti T T, TT T To To Ty TuTy
are not observed ...
| | | | | | | |
I | I ] | 1 | |
to t; t, ts t, t5 tg t;
Only the number of events in each interval is observed
to t, t, t; ty t5 ts t;
Slide Here, an observation is the number of events
34 . in an interval.
Extension to count data
A careful calculation of the likelihood of this
Consider a unique interval [a, 5] and let N be the number of events in [a, b] number of observations is not
N = n implies that the (n + 1)th event occurs after time b Straightforward___ but is possible!
Let 17 be the time of the first event after a.
Then, the likelihood of the observations is the joint probability: We can show that this number of observations
Lit) = PN =n) is a Poisson process. The Poisson parameter
= BTy € [a.b], Ty & [a,b]. ... Ty e fab), Tupy > b Ty < Ty <0< Ty < Toy) in any interval a-b is the expected number of
b b b o events in this interval: it is defined as the risk
- / [ [ | / Dtrtoe et tsr )ty b, .ty s (the cumulative hazard) in this interval.
b b b +oc "
- / / / / (H/\m :) Ptogr|fo) divdts, .. dty, di,
Ja Jty Jta_1 Jb k=1
Ala, D)™ jiam)
= =
The count data is a (non homogenous) Poisson process. b
The expected number of events in interval [a, b] is A(a,b)= Ii(t) dt
a
Slide Unlike the previous examples the DV value is
35 used to indicate the number of events in the

Extension to count data

O+ 0+@+O+ 0+ + G
to t, t, t; t, ts ts t;
D TIME DV MDV Likelihood
1 t, 1 -
1 t, 1 0 Alty, ty)eMo, W
1 t, 3 0 Aty , t,)3 el ) /3]
1 ty 2 0 Alt, , t5)? e Mz 1) /21
1 t, 1 0 A(t3 , t4)e—l\((3 )
1 tg 0 0 eAlts. ts)
1 tg 2 0 Alts , tg)? eAls. to) /21
1 t, 3 0 A(tg, ;)3 eAlts. 1) /3]

interval. It does not indicate the event type
(exact time, right, interval censored).
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Slide The severity of Parkinson’s disease is usually
36 Outcome Event Hazard in Parkinson’s Disease assessed by the Unified Parkinson’s disease
response scale (UPDRS). The UPDRS score
- - increases with time as the disease
Hazard Model with Explanatory Variables progresses. The disease status can be
described by a model for disease progression
h(t) = hy(t) -ex| -deprenyl(t) + -status(t) + ...+ X .
() = No(t) eXPWsepreny-dePIEMYIY) +Fisaris ® PiXe) (natural history) and the effects of treatment
e.g. the use of levodopa (the mainstay of
deprenyl(t) = 1 for on periods, 0 for treatment) with or without deprenyl (a mono-
off periods amine oxidase inhibitor commonly used as an
status(t) = predicted disease status adjunctive treatme‘nt‘)
as measured by UPDRS or its The hazard of a clinical outcome event e.qg.
subscales at time t death, can be described by a baseline hazard,
Other Explanatory Factors: (X,) hO(t), and explanatory factors such as drug
-Levodopa(t), baseline motor treatment and the time course of disease
5 Y % ' +  subtypes status status. Other factors (age, sex, smoking, etc)
Time since study entry (y) -Age, sex, smoking status at study are easily included in this kind of model.
A Observed — Levodopa entr)’/ ’
—— Predictions —— Depreny!
Slide . The change of disease status, reflected by the
37 Eval_uatlon of I_—|a_zard Models time course of UPDRS, is the most important
visual predictive check factor determining the hazard of clinical
Death Disability outcome events in Parkinson’s disease. The
_ z- different shapes of the survival function for
£, 8. death, disability, cognitive impairment and
3" s " depression reflect different contributions of
23 g disease status to the probability of not having
B — ovenmosmonion =, had the event as time passes.
87 T Gmmma 8-
. Predctsd 90 C o
- @zl |
o 1 2 3 4 5 3 7 ] i 2 3 4 5 € 7
Time since study entry (years) Time since study entry (years)
Cognitive Impairment Depression
= 8.
21 g
‘T'Tle jﬁce study entry (years) Time since study entry (years)
Slide . .
38 Putting Time Back

into The Picture

“Science is either

stamp collecting or physics”
Ernest Rutherford

Stamp

Collecting| — e

Biomarker Hazard
+ | —— +

Time Time

——— [oucome]

ENHG Hollrd, M.Lavielle 2011, all rights reserved.
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Slide
39
Backup Slides
Slide The survival function of a constant hazard
40 decreases exponentially to 0.
Constant hazard A(t) =4
T is a random variable with an exponential distribution:
P(T>t)=e*
0.9 ——=05Hh
084 —r=1H'
—a=2Hh!
0.71
= 064
A
~ 051 r
& 0.4 L
0.3 L
0.21 r
0.11
0 T T T T T T T T T
0 0.5 1 15 2 25 3 35 4 4.5 5
time (h)
Slide Constant hazard makes the very strong
41 assumption of memoryless.

Constant hazard A(t) =4

Important property: this distribution is memoryless

P(T>t+aT >a)=P(T>tT>0)=e"

L L

1 L L L L L

0.

©
\

P(T>t)\P(T>t|T>1)
0.6
0.4

0.21

P(T>t|T>3)

T

0 T T T T T
0 0.5 1 15 2 25 3 3.5

time (h)
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4 4.5

The modeller should be aware of this strong
assumption at the time to select a hazard
function.

Consider for example that your event is the
first passing of the viral load (HIV, HCV,...)
under a given threshold (e.g. LOQ). Here, t_ 0
is the time when the active treatment starts.
We assume that the initial viral load att_O is
above this threshold. Then :

- the hazard is 0 at t_0 and increases with
time

- if you know that you are still above the
threshold after 6 months for instance, then this
information will “modify” the distribution of
your event time :

P(T > t+a | T>a) > P(T>t| T>0)

In other words, you are more likely to be a no
responder and the probability to reach the
threshold decreases

This is one of the many examples where a
constant hazard is a very poor choice and
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when alternative models (Weibull for instance)
should be considered.

Slide . . When covariates change with time then the
42 Parametric RegI’ESSIOI’] hazard must be integrated in a piecewise
fashion. This is exactly analogous to PK
In Standard PaCkageS problems. If clearance changes from one time
period to the next then the concentration
Estimation of hazard parameters is done after prediction must be done piecewise (NONMEM
transformation e.g. In(T) describes this as ‘advancing the solution’)
Explanatory variable model is then linear regression e.g. for
Weibull
)=+ 4 |
n(T,) :; N(A) = By - Xy = By - Xy —= By Xyt
Or more generally
IN(T}) = s+ Xy + X+ + A X, + 0 &
Note that covariates (x1...xp) are usually assumed to be time invariant
Standard survival analysis is equivalent to non-compartmental PK.
o It i§ uspjuljor description but ignores time variation.
Slide i i . . . A useful view of survival is to look at the
43 DlStI’l butlon Of Su rVIVal Tl mes probability density function for the survival

Michaelis-Menten Elimination

14 = -2
0.9+ 1.8
0.8+ 1.6

_ 0.7 ot 1.4
§ 0.6 survival:l 12
2 054 hazard:1 1
2 0.4 PDF:1 0.8
0.3 =] = 0.6
0.2 -0.4
0.1+ ~0.2
o T T T T T ﬁ T T T 1 0
0 05 1 15 2 25 3 35 4 45 5
TIME
b
. jo hazard(t)d

Survival() = e

PDF(t)=Survival()-hazard(t)
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times.
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Slide Standard survival analysis can include varying
44 How can the effect of treatment age implicitly. Adding time-varying covariates
RX(t) be described? for survival analysis is harder to do because of
the need to integrate the hazard.
Drug treatments will often change with time
and if expressed in terms of drug
concentration the hazard could change in
proportion to concentration after every dose.
! T T T T T
] 20 40 60 80
Figure 2.6 Hazard functions for all cause montality for the US population in
1989. White males ( ); white females (-+++-- ); black males (- - - - - - ),
black females (——)
h(t) = f(sex, race, age(t), Rx(t),...)
Slide An example of how to simulate the time
45 course of survivor function, cumulative hazard

Survivor Function

0.9
. 08 N
S o.
g o6 AN
2 o5 N
S 04 —%
Z 03
2 02 \\
0.1 ~
0
0 2 4 6 8 10
Time (y)

Constant Hazard ====Time varying hazard
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and pdf with a continuously time varying
hazard using Berkeley Madonna code.

METHOD RK4

STARTTIME =0
STOPTIME=10

DT =0.02

beta0=0.1
betaStatus=0.01
S0=20
status=S0+12*time

hazpla=betaO*exp(betaStatus*S0)
haztrt=betaO*exp(betaStatus*status)
init(cumpla)=0

d/dt(cumpla)=hazpla
survpla=exp(-cumpla)

init(cumtrt)=0

d/dt(cumtrt)=haztrt
survtrt=exp(-cumtrt)

pdfpla=survpla*hazpla
pdftrt=survtrt*haztrt




Holford & Lavielle 2011 http://www.page-meeting.org/default.asp?abstract=2281

Slide )
46 Cumulative Hazard and
Relative Risk
2.5 2.5
i // "}
é 1.5 1.5 ﬁ
2 2
% 1 // 1 ,_‘g
«< £
0.5 - - 05 3
0 T T T T 0
0 2 4 6 8 10
Time (y)
e Relative Risk === Constant Hazard
===Time varying hazard
Slide
47
Probability Density Function
0.15
= 0.1 +
% 0.05
0
0 2 4 6 8 10
Time (y)
=== (Constant Hazard ====Time varying hazard
Slide ] )
48 Hazard models link disease progress and

clinical outcome probability

Survivor Function Hazard Function
_.ryh(t) h(t)=4
S{t)=Pr(T =t)=e h()= Ayexp(BuusStatus()
1 0.5
N

. 0.4
07 /
0.6 AN 03 /

0.2
03 -

- 0.1
0.1 ~

Survivor Function
ocooo
N B 0
%
Hazard (1/y)

] 2 4 6 8 10

Time (y) Time (y)

~—— Constant hazard - Hazard changes with status
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Slide
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Likelihoods for Survival

For an uncensored datum. with T, equal to the age at death. we have
Pr(T =Ti|0) = f(T:|8) = S(T|6) * h(T)
For a left censored datum. such that the age at death is known to be less than 7. we have
Pr(T < T}|0) = F(T}|8) = 1 — 5(T;|0)
For a right censored datum, such that the age at death is known to be greater than 7, we have
Pr(T > T}|8) = 1 — F(T;|0) = S(T3|0)
For an interval censored datum. such that the age at death is known to be greater than T, and less than T . we have

Pr(Ti, < T < T, |0) = S(Tusl6) — S(Ti-|6)

http://en.wikipedia.org/wiki/Survival_analysis

EINHG Hollord, . Laville 2011, al ighis reserved.

An alternative way of describing the
likelihoods in terms of the survivor function
and hazard function alone.




