Modelling CD4 T cell reconstitution in HIV-infected children starting ART

Rollo L Hoare ${ }^{\dagger 1,2}$, Robin Callard ${ }^{1,2}$ \& Joseph F Standing ${ }^{1,2,3}$

(1) UCL CoMPLEX: Centre for Mathematics and Physics in the Life Sciences and Experimental Biology,
(2) UCL Institute of Child Health, (3) Great Ormond Street Hospital NHS Foundation Trust,
† r.hoare.11@ucl.ac.uk

Introduction

-Antiretroviral therapy (ART) is the standard treatment for adults and children infected with HIV.
-HIV mainly infects CD4 T cells, causing a decline in CD4 T cell concentration. This decline leaves patients immunocompromised and hence vulnerable to opportunistic infections.
-ART suppresses HIV replication, reducing viral load, allowing CD4 T cells to reconstitute. This reconstitution is slow, taking between one a two years.
-Studying immune reconstitution in children is challenging due to the rapidly developing immune system; expected CD4 T cell counts for age decrease three-fold [1].
-This work combines a previously presented model describing CD4 T cell reconstitution following paediatric HSCT [2] with a model for HIV dynamics in adults [3].

Methods

- The data comprises paired time series of CD4 T cell concentrations and viral loads for up to three years after initiation of ART.
- Datasets come from two clinical trials:

Dataset A: 66 patients, 721 CD4 counts, 525 viral loads (388 BLQ)
Dataset B: 1026 patients, 10490 CD4 counts, 2122 viral loads (1223 BLQ).

- The CD4 concentration is modelled directly, without standardisation for age, using mechanistic modelling which takes into account the effects of immune system development.
- Viral dynamics have been adapted to include a term accounting for the decrease of virus loss rate at low viral loads.

The Model

The equations for the dynamics with time t and age τ are given by:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} X & =\lambda-d_{x} X+p_{x} X-\delta V X \\
\frac{\mathrm{~d}}{\mathrm{~d} t} V & =p_{v} V X\left(1-E_{\mathrm{Drug}}\right)-d_{v} V \frac{V}{V+V_{50}} \\
\lambda(t, \tau) & =\lambda_{0} \times\left(\frac{y(\tau) N(\tau) \gamma}{0.02 \eta(c-\gamma)}\right) \\
d_{x}(\tau, X) & =d_{0} \times y(\tau) \times \exp \left[c_{d}\left(\frac{X(t)}{N(\tau)}-1\right)\right] \\
p_{x}(\tau, X) & =p_{0} \times y(\tau) \times \exp \left[c_{p}\left(1-\frac{X(t)}{N(\tau)}\right)\right] \\
p_{v} & =\frac{d_{v} V_{0}}{X_{0}\left(V_{0}+V_{50}\right)}, \quad \delta=\frac{\lambda-d_{x} X_{0}+p_{x} X_{0}}{X_{0} V_{0}}
\end{aligned}
$$

$N(\tau)$ is the expected CD4 T cell concentration of a healthy child with age.
The model has ten parameters to be estimated, six for CD4 concentration: $X_{0}, \lambda_{0}, d_{0}, p_{0}, c_{d}, c_{p}$, and four for viral load: $V_{0}, d_{v}, V_{50}, E_{\text {Drug }}$.

The model was fitted to the data using the Importance Sampling algorithm in NONMEM 7.3 and the ADVAN13 subroutine [5].

Results

-For Dataset A, all parameters were estimated, with random effects on all parameters, but in Dataset B, $E_{\text {Drug }}$ was fixed to 1.

- Parameter estimates from the model are sensible, with reasonable agreement between the datasets.

Parameter	
λ_{0}	Proportion of theoretical thymic output [4] (cells/day)
d_{0}	Proportion of expected loss (/day)
p_{0}	Proportion of expected proliferation (/day)
X_{0}	Initial concentration of T cells (cells $/ \mu \mathrm{L}$)
c_{d}	Strength of competition loss
c_{p}	Strength of competition proliferation
V_{0}	Initial viral load (cells/mL)
${ }^{\text {d }}$	Rate of loss for virus cells (/day)
V_{50}	Viral load at decrease of cell loss (cells/mL)
$E_{\text {Drug }}$	Effect of drug
σ_{x}	Variance of the residual error for CD4 concentration
	Variance of the residual error for viral load

-The visual predictive checks below demonstrate that simulations from the model match the observed data well.

Dataset B

Conclusions

- A model has been developed for CD4 T cell reconstitution and viral load decline for HIV-infected children starting ART
- The model represents the underlying biology of the system, bringing together:
-The changes in the thymus and dynamics with age
- Competition for homeostatic signals by CD4 cells in the body
-Decrease in virus loss rate at low levels of viral load.
- This model has then been successfully fitted to patient data.
- The model has the potential to give insight into the effects of a range of covariates, such as: socio-economic factors, the ART drugs used, or the age of the patient at the start of ART.

References

