Modelling CD4 T cell reconstitution in HIV-infected children starting ART

Rollo L Hoare $^{\dagger 1,2}$, Robin Callard 1,2 & Joseph F Standing 1,2,3

(1) UCL CoMPLEX: Centre for Mathematics and Physics in the Life Sciences and Experimental Biology,

(2) UCL Institute of Child Health, (3) Great Ormond Street Hospital NHS Foundation Trust, † r.hoare.11@ucl.ac.uk

Introduction

- -Antiretroviral therapy (ART) is the standard treatment for adults and children infected with HIV.
- -HIV mainly infects CD4 T cells, causing a decline in CD4 T cell concentration. This decline leaves patients immunocompromised and hence vulnerable to opportunistic infections.
- -ART suppresses HIV replication, reducing viral load, allowing CD4 T cells to reconstitute. This reconstitution is slow, taking between one a two years.
- Studying immune reconstitution in children is challenging due to the rapidly developing immune system; expected CD4 T cell counts for age decrease three-fold [1].
- -This work combines a previously presented model describing CD4 T cell reconstitution following paediatric HSCT [2] with a model for HIV dynamics in adults [3].

Methods

- -The data comprises paired time series of CD4 T cell concentrations and viral loads for up to three years after initiation of ART.
- Datasets come from two clinical trials:
- Dataset A: 66 patients, 721 CD4 counts, 525 viral loads (388 BLQ) Dataset B: 1026 patients, 10490 CD4 counts, 2122 viral loads (1223 BLQ).
- The CD4 concentration is modelled directly, without standardisation for age, using mechanistic modelling which takes into account the effects of immune system development.
- Viral dynamics have been adapted to include a term accounting for the decrease of virus loss rate at low viral loads.

The Model

Thymic output with age [4]

Age effects on dynamics

0.010

Sample model output

The equations for the dynamics with time t and age τ are given by:

$$\frac{\mathrm{d}}{\mathrm{d}t}X = \lambda - d_x X + p_x X - \delta V X$$

$$\frac{\mathrm{d}}{\mathrm{d}t}V = p_v V X (1 - E_{\mathsf{Drug}}) - d_v V \frac{V}{V + V_{50}}$$

$$\lambda(t,\tau) = \lambda_0 \times \left(\frac{y(\tau) N(\tau) \gamma}{2\pi^{3/2}}\right)$$

 $N(\tau)$ is the expected CD4 T cell concentration of a healthy child with age.

The model has ten parameters to be estimated, six for CD4 concentration: $X_0, \lambda_0, d_0, p_0, c_d, c_p$, and four for viral load: $V_0, d_v, V_{50}, E_{Drug}$.

The model was fitted to the data using the Importance Sampling algorithm in NONMEM 7.3 and the ADVAN13 subroutine [5].

Results

- -For Dataset A, all parameters were estimated, with random effects on all parameters, but in Dataset B, E_{Drug} was fixed to 1.
- -Parameter estimates from the model are sensible, with reasonable agreement between the datasets.

			Dataset A		Dataset B	
Parameter		Estimate	Ω	Estimate	Ω	
λ_0	Proportion of theoretical thymic output [4] (cells/day)	0.107	0.713	0.276	5.62	
d_0	Proportion of expected loss (/day)	0.496	0.509	1.49	4.52	
p_0	Proportion of expected proliferation (/day)	0.271	1.17	0.436	1.02	
X_0	Initial concentration of T cells (cells/ μ L)	569	0.183	270	1.48	
c_d	Strength of competition loss	0.328	0.781	1.65	0.203	
c_p	Strength of competition proliferation	2.06	0.460	1.11	0.558	
V_0	Initial viral load (cells/mL)	21800	0.976	324000	1.96	
d_v	Rate of loss for virus cells (/day)	0.281	0.510	0.339	0.188	
V_{50}	Viral load at decrease of cell loss (cells/mL)	324	0.786	2180	1.39	
E_{Drug}	Effect of drug	0.898	0.326	1†		
σ_x	Variance of the residual error for CD4 concentration	0.425		0.193		
σ_v	Variance of the residual error for viral load	1.37		0.967		

 The visual predictive checks below demonstrate that simulations from the model match the observed data well.

Conclusions

- A model has been developed for CD4 T cell reconstitution and viral load decline for HIV-infected children starting ART
- The model represents the underlying biology of the system, bringing together:
- -The changes in the thymus and dynamics with age
- -Competition for homeostatic signals by CD4 cells in the body
- -Decrease in virus loss rate at low levels of viral load.
- This model has then been successfully fitted to patient data.
- The model has the potential to give insight into the effects of a range of covariates, such as: socio-economic factors, the ART drugs used, or the age of the patient at the start of ART.

References

- [1] S. Huenecke, M. Behl, C. Fadler, et al., Age-matched lymphocyte subpopulation reference values in childhood and adolescence: application of exponential regression analysis, Eur J Haematol **80**(6):532-9 (2008).
- [2] R. L. Hoare, et al., A novel mechanistic model for CD4 lymphocyte reconstitution following paediatric haematopoietic stem cell transplantation, PAGE 22: Abstract 2676 (2013).
- [3] S. Bonhoeffer, R. M. May, G. M. Shaw, M. A. Nowak, Virus dynamics and drug therapy, Proceedings of the National Academy of Sciences 94(13):6971–6976 (1997).
- [4] I. Bains, R. Thiébaut, A. J. Yates, R. Callard, Quantifying thymic export: combining models of naive T cell proliferation and TCR excision circle dynamics gives an explicit measure of thymic output, J Immunol **183**(7):4329–36 (2009).
- [5] L. B. Sheiner, S. L. Beal, Evaluation of methods for estimating population pharmacokinetic parameters. III. Monoexponential model: Routine clinical pharmacokinetic data, Journal of Pharmacometrics and Biopharmaceutics 11(3):303-19 (1983).

