
1) To implement in PFIM an extension of FIM for NLMEM considering covariance
between random effects

2) To study the impact of the size of covariance on the relative standard errors (RSE),
on the amount of information and on optimal designs

3) To derive analytical prediction of the RSE in the framework of rich individual data
without using the model

Design evaluation in nonlinear mixed effect models: 
influence of covariance between random effects

Cyrielle Dumont (1), Marylore Chenel (2) and France Mentré (1)

(1) UMR 738 INSERM and University Paris Diderot, Paris, France.

(2) Department of Clinical Pharmacokinetics, Institut de Recherches Internationales Servier, Paris, France.

Choice of population pharmacokinetic (PK) designs

� Important on the study results (precision of parameter estimates)
� Balance between number of subjects and number of measures/subject, choice of 
sampling times
� Approaches to assess/optimise designs for nonlinear mixed effect models
(NLMEM)
- Based on simulation: time consuming
- Based on the calculation of the Fisher information matrix (FIM) and the optimisation 
of its determinant (det(FIM)) [1,2]
� Several software packages including PFIM in R [3,4]

Objectives

Introduction Results

� Predictions of PFIM similar to NONMEM results (Table 1) 
� Predictions of PFIM similar to PopDes and PopED (comparison thanks to K. 
Ogungbenro and J. Nyberg)
� Similar RSE for fixed effects and variances with and without covariance (Table 1)

2) Influence of covariance

1) Relevance of the extension of FIM including covariance in PFIM by comparison
with NONMEM

Table 1: Comparison between RSE (%) predicted 
by PFIM and RSE(%) observed by NONMEM

without using the model

� Three compartment model with 6 parameters

Figure 1: Structural PK model with 3 compartments

� Parameters CL and V1 with inter-individual variability and which are correlated
(corr=0.78)
� Combined residual error model
� Estimated parameters used for designing are given in Table 1

Notations: N subjects i = 1,…, N

: vector of observations for individual i
: vector of the p fixed effect parameters

bi : vector of the p random effects for individual i
bi ~N(0,Ω), Ω defined as a p×p-non diagonal matrix

: elementary design for individual i
with : vector of individual parameters

: vector of the variance-covariance
terms, corresponding to the vector of the lower triangular of Ω and additional error
terms

εi : vector of residual errors, εi ~ N(0,Σi)

Methods

2) Influence of covariance

� Similar RSE for fixed effects and variance components whatever the value of
covariance
� RSE for covariance decreases when covariance increases
� Amount of information increases when covariance increases

Figure 2: Influence of covariance on criterion and on RSE for covariance

� Optimal designs according to the value of covariance with only one group:

Same optimal sampling times for a correlation equal to 0 and equal to 0.8
Design slightly different with a correlation equal to 0.9 (a different optimal time) but
little loss of efficiency (lower than 1%)
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Data and pharmacokinetic model 

cov = 0 and cov = 0.10 (corr=0.8)

cov =0.12 (corr=0.9)
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cov =0.12 (corr=0.9)

� 82 children receiving an intravenous single dose of 0.1 mg/kg [5,6] (see poster
Dumont et al., PAGE 2011, poster n°2160)
� 22 observations per child at sampling times 0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.3, 1.6, 1.8, 2, 2.5,
3, 4, 5, 6, 7, 8, 9, 10, 12, 16 and 24 hours after dose injection

Figure 3: Optimal designs according to the 
value of covariance with design A (left) = 0.1, 
0.4, 0.8, 2, 6, 16, and with design B (right) = 0.1, 

0.2, 0.8, 2, 6, 16

Table 2: Evaluation of designs A and B 
considering the model with  cov = 0.12 

(corr = 0.90)

1) Implementation of FIM including covariance between random effects in PFIM:

� Extension of the calculation including covariance between random effects already
performed [7]

� Expression of : diagonal block matrix
- block with fixed effects (size p×p)
- block with elements of λ (size p(p+1)/2+number of error terms if all covariance terms
are different from zero)

� Implementation of FIM including covariance in PFIM for single and multiple
responses

� Evaluation of implementation of FIM including covariance in PFIM:
- Simulation of data for rich design (with 22 points) in 82 children and with a dose of
0.1 mg/kg
- Estimation of parameters and standard errors given by NONMEM
- Comparison of RSE predicted by PFIM with the new implementation of FIM with
those observed by NONMEM

2) Impact of the size of covariance on the RSE and on the designs: 

Impact of the covariance on RSE and on amount of information was tested on a range 
from a covariance equal to 0 to 0.12 (corr = 0.9)

� Prediction of RSE on fixed effects and on variance components assuming different
values of covariance

� Evaluation of the total information through the criterion (det(FIM)1/P, P being the
total number of parameters)

� Role of covariance on optimal designs with 6 points among 12, obtained via the
Federov-Wynn algorithm. Here, it is constrained that all individuals have the same
design (only one group)

3) Approximation of the calculation of FIM and of the RSE in the framework of
individual rich data :

� Assuming a rich design, we would have a lower bound if we had observed
individual parameters which follow a log-normal distribution

ln(θi)~N(ln(β),Ω)

Conclusion and prospects
� Relevance of the extension of FIM taking into account covariance in PFIM:
available in the next version

� Development also done for multi-responses models

� Covariance affects neither RSE of fixed effects nor RSE of variance components

� Influence on optimal design only exists for important correlation but has very low
impact on efficiency

� It is possible to analytically predict the RSE in the framework of rich individual
data without using the model and these RSE are lower bound of RSE that could be
obtained by population approach
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little loss of efficiency (lower than 1%)

3) Analytical predictions of the RSE for rich individual data

Table 3: Comparison of results obtained by the calculation with those predicted by PFIM

� Analytical RSE are similar to those given by PFIM (Table 3)
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