

Joint modeling of biomarkers dynamics and survival with competing risks to predict the prognosis of patients hospitalized with severe infectious diseases

Alexandra Lavalley-Morelle^{*1}, France Mentré^{1,2}, Emmanuelle Comets^{1,3}, Jimmy Mullaert^{1,2}

*alexandra,lavalley-morelle@inserm.fr 1 Université Paris Cité, UMR 1137 IAME, INSERM, F-75018 Paris, France 2 Department of Epidemiology, Biostatistics and Clinical Research, AP-HP, Bichat-Claude Bernard University Hospital, F-75018 Paris, France 3 Université de Rennes, Inserm, EHESP, Irset - UMRS 1085, F-35000 Rennes, France

29/06/2023

Provide every patient with a self and adapted medical treatment	Introduction ●○○○○	Covid-19 case study	Methodological assessment	<i>saemix</i> extension	Conclusion
	<image/> <text><text></text></text>				

Introduction ●○○○○	Covid-19 case study	Methodological assessment	saemix extension	Conclusion
Provide every patient with a self and adapted medical	Predict the patient	ne death of hospitalized s for severe infectious diseases		
Personalized medicine	Patient 1 Patient 2 Patient 3 Patient 4	End of the study		
	Patient 5 Patient 4 • •	Death Discharge from hospital Censoring ompeting risks		

Introduction ●○○○○	Covid-19 case study	Methodological assessment	saemix extension	Conclusion
Treatment Options	Predict the	death of hospitalized	Hospitals equ	lipped with
Provide every patient with a self and adapted medical treatment	patients f	or severe infectious diseases	laboratory inform that routinely ga biological	nation systems other results of analyses
Personalized	Patient 1 Patient 2 Patient 3	End of the study	Consecutive biologica used in a joint model dynamic predictions ¹	al observations can be to provide individual ^L of patient prognosis
medicine	Patient 4 Patient 5 Patient 4 • Dea • Dis	• • • • • • • • • • • • • • • • • • •	Biomarker evolution	
	• Cer	npeting risks	Association	
				(T, δ)

Widely developed in literature (single event^{1,2,3}, competing risks^{4,5,6}) Estimation available in various software: (R, SAS, Monolix, NONMEM,...)

LMEM = linear mixed-effects model

1- Rizopoulos. *Biometrics*, 2011 2- Angeli et al. *The AAPS Journal*, 2016 3- Elashoff et al. *Biometrics*, 2008 4- Deslandes and Chevret. BMC Medical Research and Methodology, 2010
5- Musoro et al. Statistica Neerlandica, 2018
6- Alvares and Rubio. Statistics in Medicine, 2021

Widely developed in literature^{7,8,9} Some softwares available: Monolix, NONMEM

Very few developed in literature (1 published work¹⁰) Software used: NONMEM

NLMEM = nonlinear mixed-effects model

7- Desmée et al. *The AAPS Journal*, 2015
8- Tardivon et al. *Clinical Pharmacology & Therapeutics*, 2019
9- Kerioui et al. *Statistics in Medicine*, 2020

10- Krishnan et al. CPT: Pharmacometrics & Systems Pharmacology, 2021

Covid-19 case study

Methodological assessment

saemix extension

Conclusion

Comes with computational and identifiability issues due to the high number of random effects¹¹ Published models mostly limited to longitudinal models with at most two biomarkers^{12,13}

8

How to select biomarkers most associated with prognosis?

Introduction ○○○○●	Covid-19 case study	Methodological assessment	saemix extension	Conclusion

Objectives of the work

COVID-19 case study

• Develop a multivariate joint model and a strategy to select a subset of biomarkers to predict the death of patients hospitalized for SARS-CoV-2 infection

Methodological assessment

- Evaluate the SAEM algorithm implemented in Monolix for multivariate joint models under competing risks
- Assess the validity of the proposed selection strategy

saemix extension

• Extend the R *saemix*¹⁴ package to the case of multi-response and joint models

ntroduction	Covid-19 case study ●○○○○	Methodological assessment	saemix extension			Co	nclusio O	n
RisCoV database	327 patients hospitalized in F of the COVID-19 pandemi 59 biomarkers (cl followed until 4C Sco	rance during the first wave c (January to July 2020) assified in 8 categories) I death or discharge ore ¹⁵ available at admission At D30: 14% deaths 73% discharges	Complete blood count Cardiac markers Markers of inflammation	gulation Pulr fun of Liver on functions ents of the 40	nonary octions Urine C-Score	Kic func e samp	dney ctions les	
			Age, years	< 50				0
1.00 •				50 – 59				+2
e e	CIF	of discharge		60 - 69				+4
0.75 ·				70 - 79				+6
			Sex at hirth	≥ 80 Eemale	0	Male		+7
			Number of commorbidities	0 0	1	+1	≥ 2	+2
0.25 O	CII	F of death	Respiratory rate, breaths/min	< 0 20	20 – 29	+1	≥ 30	+2
0.00			Peripheral oxygen saturation on room air	≥ 92 %	0	< 92%	Ď	+2
0 5	10 15 20 Time (days)	25 30	Glasgow Coma Scale	15	0	< 15		+2
Cumulati	ive incidence functions for both	events	Urea (mmoL/L) at admission	< 7 0	7 – 14	+1	> 14	+3

C-reactive protein (mg/L) at

admisson

0

< 50 50

- 100

+1

≥ 100 +2

15- Knight et al. British Medical Journal, 2020

Introduction	Covid-19 case study ○●○○○	Methodological assessment	<i>saemix</i> extension	Conclusion
General notations	$y_{ijk} = \boldsymbol{m_k}(\boldsymbol{\psi_{ik}}, \boldsymbol{t_{ijk}}) +$	$-g[m_k(\psi_{ik},t_{ijk}),\sigma_k]\varepsilon_{ij}$ ——	→ Mixed-effects model	
y _{ijk} : obs of marker k in patient i at time t _{ijk} Score _i : baseline 4C-Score for patient i	$h_{1ik}(t) = h_{01k} \times \exp(\boldsymbol{\alpha_{1k}} \times h_{2ik}(t)) = h_{02k} \times \exp(\boldsymbol{\alpha_{2k}} \times h_{2ik}(t))$	$ \frac{m_k(\psi_{ik}, t) + \beta_{1k} \times Score_i)}{m_k(\psi_{ik}, t) + \beta_{2k} \times Score_i)} - $	 Subdistribution parametrization instantaneous risk of in-hospital death instantaneous risk of discharge from hospital death 	pital
Linear model:	$\boldsymbol{m}_{k}(\boldsymbol{\psi}_{ik}, \boldsymbol{t}_{ijk}) = \boldsymbol{\psi}_{0ik} + \boldsymbol{\psi}_{1ik} \times \boldsymbol{t}_{ijk}$	k	١	
Nonlinear model: $\psi_{.ik} = \mu_{.k} + \eta_{.ik}$ $\psi_{aik} = \mu_{ak} \times \exp(\eta_{aik})$	$\boldsymbol{m}_{k}(\boldsymbol{\psi}_{ik},\boldsymbol{\tau}_{ijk}) = \psi_{0ik} + \psi_{aik} \times [e]$	$\exp(\psi_{1ik} \times t_{ijk}) - \exp(\psi_{2ik} \times t_{ijk})$	ζ)]	

 $\begin{aligned} &\eta_{.ik} \sim \mathcal{N}(0, \Omega_k) \\ &\varepsilon_{ij} \sim \mathcal{N}(0, 1) \end{aligned}$

12

Introduction	Covid-19 case study ○●○○○	Methodological assessment	saemix extension	Conclusion		
General notations						
	У	$d_{ij1} = \boldsymbol{m_1}(\boldsymbol{\psi_{i1}}, \boldsymbol{t_{ij1}}) + g[m_1(\psi_{i1}, t_{ij1})]$	$[i_1), \sigma_1]\varepsilon_{ij}$			
y_{ijk} : obs of marker k in patient i at time t_{ijk} $Score_i$: baseline 4C-Score for patient i	 <i>Y</i> ij	$\mathbf{M}_{K} = \mathbf{m}_{K}(\boldsymbol{\psi}_{iK}, \boldsymbol{t}_{ijK}) + g[m_{K}(\boldsymbol{\psi}_{iK}, \boldsymbol{t}_{ijK})]$	σ_{jK}), σ_K] ε_{ij}			
<i>K</i> : number of biomarkers involved	$ \begin{array}{l} \begin{array}{l} \text{patient } i \\ \text{number of biomarkers} \\ \text{involved} \end{array} \end{array} \qquad $					
Linear model:	$\boldsymbol{m}_{k}(\boldsymbol{\psi}_{ik},\boldsymbol{\tau}_{ijk})=\psi_{0ik}+\boldsymbol{\psi}_{0ik}$	$v_{1ik} \times t_{ijk}$				
Nonlinear model:	$\boldsymbol{m}_{\boldsymbol{k}}(\boldsymbol{\psi}_{\boldsymbol{i}\boldsymbol{k}},\boldsymbol{t}_{\boldsymbol{i}\boldsymbol{j}\boldsymbol{k}})=\psi_{0\boldsymbol{i}\boldsymbol{k}}+\boldsymbol{y}$	$\psi_{aik} \times \left[\exp(\psi_{1ik} \times t_{ijk}) - \exp(\psi_{2ik}) \right]$	$_k \times t_{ijk})]$			
$\psi_{.ik} = \mu_{.k} + \eta_{.ik}$						
$\psi_{aik} = \mu_{ak} \times \exp(\eta_{aik})$	<i>x</i>)					
$\eta_{.ik} \sim \mathcal{N}(0, \Omega_k)$						

 $\varepsilon_{ij} \sim \mathcal{N}(0,1)$

Introduction	Covid-19 case study ○ ● ○ ○ ○	Methodological assessment	saemix extension	Conclusion
General notations				
	${\mathcal Y}_i$	$_{j1} = \boldsymbol{m_1}(\boldsymbol{\psi_{i1}}, \boldsymbol{t_{ij1}}) + g[\boldsymbol{m_1}(\boldsymbol{\psi_{i1}}, \boldsymbol{t_{ij1}})]$	(), $\sigma_1]\varepsilon_{ij}$	
y_{ijk} : obs of marker k in patient i at time t_{ijk} Score _i : baseline 4C-Score for	 Yiji	$_{K} = \boldsymbol{m}_{K}(\boldsymbol{\psi}_{iK}, \boldsymbol{t}_{ijK}) + g[m_{K}(\boldsymbol{\psi}_{iK}, \boldsymbol{t}_{ijK})]$	$_{K}),\sigma_{K}]\varepsilon_{ij}$	
<i>K</i> : number of biomarkers involved	$h_{1i}(t) = h_{01} \times \exp(h_{2i}(t)) = h_{02} \times \exp(h_{2i}(t))$	$\begin{aligned} & (\alpha_{11} \times m_1(\psi_{i1}, t) + \dots + \alpha_{1K} \times m_K) \\ & (\alpha_{21} \times m_1(\psi_{i1}, t) + \dots + \alpha_{2K} \times m_K) \end{aligned}$	$\frac{(\boldsymbol{\psi}_{iK}, \boldsymbol{t}) + \beta_1 \times Score_i)}{(\boldsymbol{\psi}_{iK}, \boldsymbol{t}) + \beta_2 \times Score_i)}$	
Linear model:	$\boldsymbol{m_k}(\boldsymbol{\psi_{ik}}, \boldsymbol{t_{ijk}}) = \psi_{0ik} + \psi$	$v_{1ik} \times t_{ijk}$		
Nonlinear model:	$m_k(\psi_{ik}, t_{ijk}) = \psi_{0ik} + \psi_{0ik}$	$\psi_{aik} \times \left[\exp(\psi_{1ik} \times t_{ijk}) - \exp(\psi_{2ik}) \right]$	$(\times t_{ijk})]$	
$\begin{split} \psi_{.ik} &= \mu_{.k} + \eta_{.ik} \\ \psi_{aik} &= \mu_{ak} \times \exp(\eta_{aik}) \\ \eta_{.ik} &\sim \mathcal{N}(0, \Omega_k) \\ \varepsilon_{ij} &\sim \mathcal{N}(0, 1) \end{split}$	(θ) $\theta = (\theta)$ Monol	Estimation $\mu, \Omega, \sigma, h_{01}, h_{02}, \alpha_1, \alpha_2, \beta_1, \beta_2$) ix software version 2018R2	$\mu = (\mu_1, \dots, \mu_K)$ $\Omega = diag(\omega_1, \dots, \omega_K)$ $\sigma = (\sigma_1, \dots, \sigma_K)$ $\alpha_1 = (\alpha_{11}, \dots, \alpha_{1K})$ $\alpha_2 = (\alpha_{21}, \dots, \alpha_{2K})$	

Introduction	Covid-19 case study ○○●○○	Methodological assessment	saemix extension	Conclusion

Univariate joint models

NT-proBNP

Univariate joint models

Biomarker	α_1	RSE (α_1)	-log10(p)	model		
Complete	blood co	ount				
Neutrophil polynuclear cells	0.24	16.17	9.20	nonlin		
Platelets	-0.004	27.66	3.52	lin		
Erythrocytes	-0.44	45.28	1.57	lin		
Hemoglobin	-0.14	49.06	1.38	lin		
Соа	gulation					
D-Dimers	1.08	14.86	10.78	lin		
Activated facteur V	0.04	18.40	7.26	lin		
aPTT	1.50	20.00	6.24	lin		
Fibrinogen	0.70	22.10	5.22	lin		
Activated facteur II	-0.02	45.62	1.55	lin		
Pulmona	ry functi	ons				
рНа	-20.61	11.18	18.42	lin		
pCO2a	0.19	12.48	14.95	lin		
Oxyhemoglobin ratio	-2.04	45.23	1.57	lin		
Markers of inflammation						
CRP	1.25	17.63	7.85	lin		
Haptoglobin	0.42	19.03	6.83	lin		
Orosomucoid	1.85	19.87	6.32	lin		

Biomarker	α ₁	RSE (α_1)	-log10(p)	model		
Blood kidney fun	ctions/c	ellular lys	is			
Lactate deshydrogenase (LDH)	0.01	12.97	13.90	lin		
Uremia	0.07	18.11	7.48	nonlin		
Kaliuresis	0.10	19.19	6.73	nonlin		
Magnesium	6.65	23.96	4.52	lin		
Calcemia	-6.00	25.27	4.12	lin		
Creatininemia	0.003	32.27	2.71	lin		
Phosphates	1.92	39.10	1.98	lin		
Kalemia	0.99	44.01	1.64	lin		
Urine kidn	ley funct	tions				
Liver/pancreatic functions						
Albuminemia	-0.11	27.43	3.57	lin		
Lipasemia	0.88	17.22	8.19	lin		
Cardiac markers						

0.48

23.01

4.86

lin

Introduction	Covid-19 case study ○○○○●	Methodological assessment	saemix extension	Conclusion ○○

Multivariate joint models

- Removed the highest p-value Wald test for $\hat{\alpha}_{.k}$
- Stop when all p-values for < 5%

Introduction	Covid-19 case study ○○○○●	Methodological assessment	saemix extension	Conclusion ○○

Multivariate joint models

Initial multivariate joint model

Intermediate multivariate joint model

Final multivariate joint model

Link and covariate parameter estimates (final multivariate joint model)

• Stop when all p-values for < 5%

.

Introduction	Covid-19 case study ○○○○●	Methodological assessment	<i>saemix</i> extension	Conclusion
Multivariate j	oint models			
Initial multiva	ariate joint model	Intermediate multivariate joint model	Final mult	ivariate joint model
D-D Neutro- phils Albun • • • • • • • • • • • • • • • • • • •	om the final multivariate joint mo Derivation of individual dynamic Good prediction performances Better than a model that only co GE conference (2022), " Longitudinal biomark -COV-2 infection : a joint analysis with comp	Neutro- pH odel: c predictions onsider baseline information ers predicting death of hospitalized patients eting risks "	â _{2k}	leutro- phils CRP
	•	Removed the highest p-value Wald test f	For $\hat{\alpha}_k$	

• Stop when all p-values for < 5%

ntroduction	Covid-19 case study	Methodological assessment	saemix extension	Conclusion
Objectives	 Evaluate the performances of the Assess the validity of the propo 	he estimation sed selection strategy		

Introduction	Covid-19 case study	Methodological assessment ●○○○	<i>saemix</i> extension	Conclusion
Objectives	 Evaluate the performances of th Assess the validity of the proposition 	e estimation sed selection strategy		

Data generating mechanism

- M = 100 datasets of N = 300 patients
- K = 7 biomarkers (bm_1 to bm_7) simulated according to the design of the application (multivariate stage)

2 failure causes: death (event 1) and discharge (event 2)

Introduction	Covid-19 case study	Methodological assessment ●○○○	saemix extension	Conclusion
Objectives	 Evaluate the performances of t Assess the validity of the properties 	he estimation used selection strategy		
Data generat	ing mechanism			

- M = 100 datasets of N = 300 patients
- K = 7 biomarkers (bm_1 to bm_7) simulated according to the design of the application (multivariate stage)

2 failure causes: death (event 1) and discharge (event 2)

Biomarker	Longitudinal submodel	Error model	Measurement frequency	Association with event 1	Correlation on slopes
bm_1	Nonlinear	Proportional	Every 2 days	\checkmark	
bm_2	Linear	Additive	Every 1.5 days	\checkmark	
bm_3	Linear	Additive	Every 2 days	\checkmark	
bm_4	Linear	Additive	Every 3 days		$\rho(\eta_{.4},\eta_{.2}) = 0.8$
bm_5	Linear	Proportional	Every 3 days		$\rho(\eta_{.5},\eta_{.3}) = 0.8$
bm_6	Linear	Proportional	Every 3 days		
bm_7	Linear	Proportional	Every 3 days		

$$h_{i1}(t,\psi_i;\theta) = \frac{p_1g_1 \exp(-g_1 \times t)}{1 - p_1(1 - \exp(-g_1 \times t))} \exp(\alpha_{11} \times m_1(\psi_{i1},t) + \dots + \alpha_{13} \times m_3(\psi_{i3},t))$$

$$h_{i2}(t,\psi_i;\theta) = \frac{1}{b} \times \frac{(1-F_1(\infty))\exp(-t/b)}{1-(1-F_1(\infty))(1-\exp(-t/b))}$$

Introduction	Covid-19 case study	Methodological assessment	saemix extension	Conclusion
0000	00000	0000	000000	00

Estimands and performances measures

Objective 1: assess the performances of the estimation

For a simulation $m \in \{1, ..., M\}$:

- Estimation of θ (true model parameters)
- Performances assessed with relative estimation errors:

$$\operatorname{REE}^{m}(\widehat{\theta}) = \frac{\widehat{\theta}^{m} - \theta}{\theta} \times 100$$

Introduction	Covid-19 case study	Methodological assessment	saemix extension	Conclusion
0000	00000	0000	000000	00

Estimands and performances measures

Objective 1: assess the performances of the estimation

For a simulation $m \in \{1, ..., M\}$:

- Estimation of θ (true model parameters)
- Performances assessed with relative estimation errors:

$$\operatorname{REE}^{m}(\widehat{\theta}) = \frac{\widehat{\theta}^{m} - \theta}{\theta} \times 100$$

Objective 2: assess the ability of the backward strategy to find the "true" model

For a simulation $m \in \{1, ..., M\}$:

- Start with the full multivariate model (7 biomarkers)
- Backward process on $\hat{\alpha}_{1k}$ (stop when all p-values are < 5%)
- Performances assessed by reporting the final set of biomarkers

Results

Objective 1: assess the performances of the estimation

Distribution of the Relative Estimation Errors for each model parameter

Introduction	Covid-19 case study	Methodological assessment	saemix extension
0000	00000	0000	0000000

Conclusion

Results

Objective 2: assess the ability of the backward strategy to find the "true" model

Final set of biomarkers selected after the backward process for each simulation

Introduction	Covid-19 case study	Methodological assessment	saemix extension
0000	00000	0000	0000000

Results

Objective 2: assess the ability of the backward strategy to find the "true" model

Final set of biomarkers selected after the backward process for each simulation

Conclusion

0000 00000 0000 0000 00	Introduction	Covid-19 case study	Methodological assessment	saemix extension	Conclusion
	0000	00000	0000	000000	00

Objectives: extend the *saemix* package to the case of multi-responses and joint models

- Re-defining the likelihood expression (to allow for multiple outcomes)
- Implementing an algorithm for Fisher Information Matrix (FIM) computation, noted $I(\hat{\theta})$

0000 00000 0000 0000 00 00	Introduction	Covid-19 case study	Methodological assessment	saemix extension	Conclusion
	0000	00000	0000	000000	00

Objectives: extend the *saemix* package to the case of multi-responses and joint models

- Re-defining the likelihood expression (to allow for multiple outcomes)
- Implementing an algorithm for Fisher Information Matrix (FIM) computation, noted $I(\hat{\theta})$
 - Variance-covariance matrix of $\hat{\theta}$:

 $\hat{\Sigma} = I(\hat{\theta})^{-1}$

- In joint model context: $I(\hat{\theta})$ computed by stochastic approximations
- Monolix software: Louis's method¹⁶ (time consuming...)

Objectives: extend the *saemix* package to the case of multi-responses and joint models

- Re-defining the likelihood expression (to allow for multiple outcomes)
- Implementing an algorithm for Fisher Information Matrix (FIM) computation, noted $I(\hat{\theta})$
 - Variance-covariance matrix of $\hat{\theta}$:

 $\hat{\Sigma} = I(\hat{\theta})^{-1}$

- In joint model context: $I(\hat{\theta})$ computed by stochastic approximations
- Monolix software: Louis's method¹⁶ (time consuming...)
- Alternative stochastic algorithm developed by Delattre and Kuhn¹⁷

Introduction	Covid-19 case study	Methodological assessment	<i>saemix</i> extension ○●○○○○○	Conclusion
Evaluation by simulation	ıs			
		Aims		

1. Evaluate the SAEM algorithm extended in R *saemix* package¹⁴ for joint models:

	Single event	2 competing risks
Linear mixed-effects model	LMEM – TTE	LMEM – CR
Nonlinear mixed-effects model	NLMEM – TTE	NLMEM – CR

2. Evaluate the algorithm developed by Delattre and Kuhn¹⁷ for the 4 previous models (standard errors estimation)

Introduction	Covid-19 case study	Methodological assessment	<i>saemix</i> extension ○○●○○○○	Conclusion

Evaluation by simulations

Data generating mechanism

For each of the 4 models presented, we simulate M = 100 datasets of N = 100 patients. Biomarker measurements available each day until time-to-event for at most 30 days

LMEM – TTE

$$y_{ij} = m_l(\psi_i, t_{ij}) + \sigma \epsilon_{ij}$$
$$h_i(t, \psi_i; \theta) = h_0 \times \exp(\alpha \times m_l(\psi_i, t))$$

LMEM-CR

$$y_{ij} = m_l(\psi_i, t_{ij}) + \sigma \epsilon_{ij}$$

$$h_{i1}(t, \psi_i; \theta) = \frac{p_1 g_1 \exp(-g_1 \times t)}{1 - p_1 (1 - \exp(-g_1 \times t))} \exp(\alpha_1 \times m_l(\psi_i, t))$$

$$h_{i2}(t, \psi_i; \theta) = \frac{1}{b} \times \frac{(1 - F_1(\infty)) \exp(-t/b)}{1 - (1 - F_1(\infty))(1 - \exp(-t/b))}$$

NLMEM-TTE

$$y_{ij} = m_{nl}(\psi_i, t_{ij}) + \sigma \epsilon_{ij}$$
$$h_i(t, \psi_i; \theta) = h_0 \times \exp(\alpha \times m_{nl}(\psi_i, t))$$

NLMEM-CR

$$y_{ij} = m_{nl}(\psi_i, t_{ij}) + \sigma \epsilon_{ij}$$

$$h_{i1}(t, \psi_i; \theta) = \frac{p_1 g_1 \exp(-g_1 \times t)}{1 - p_1 (1 - \exp(-g_1 \times t))} \exp(\alpha_1 \times m_{nl}(\psi_i, t))$$

$$h_{i2}(t, \psi_i; \theta) = \frac{1}{b} \times \frac{(1 - F_1(\infty)) \exp(-t/b)}{1 - (1 - F_1(\infty))(1 - \exp(-t/b))}$$

Introduction	Covid-19 case study	Methodological assessment	<i>saemix</i> extension ○○○○●○○	Conclusion

Evaluation by simulations

Estimands

Objective 1: assess parameter estimation

JM LMEM/NLMEM – TTE $\theta = (\mu, \Omega, \sigma, h_0, \alpha)$

JM LMEM/NLMEM – CR $\theta = (\mu, \Omega, \sigma, p_1, g_1, \alpha, b)$

Performance measures

Relative estimation errors: REE^m($\hat{\theta}$) = $\frac{\hat{\theta}^m - \theta}{\theta} \times 100$

Introduction	Covid-19 case study	Methodological assessment	saemix extension	Conclusion
Evaluation by	simulations			
Es	stimands		Performance measures	
Objective 1: a	ssess parameter estimation			
JM LMEM/NLM $\theta = (\mu, \Omega, \sigma, h_0)$	IEM – TTE ,, α)	Relat REE ⁷	tive estimation errors: $f^n(\hat{\theta}) = \frac{\hat{\theta}^m - \theta}{\theta} \times 100$	
$\theta = (\mu, \Omega, \sigma, p_1)$	$,g_1,\alpha,b)$		ŭ	

Objective 2: assess standard error estimation

JM LMEM/NLMEM – TTE/CR $\hat{\Sigma}$ = variance-covariance matrix of $\hat{\theta}$ Relative standard errors:

 $\operatorname{RSE}^{m}(\widehat{\theta}) = \frac{\sqrt{\operatorname{diag}(\widehat{\Sigma}^{m})}}{\widehat{\theta}^{m}} \times 100$

Relative empirical error:

$$RSE^{emp}(\hat{\theta}) = \sqrt{\frac{1}{m-1}\sum_{m=1}^{M} \left(\hat{\theta}^m - \bar{\hat{\theta}}\right)^2} \times \frac{100}{\bar{\hat{\theta}}}$$

34

Introduction	Covid-19 case study	Methodological assessment	saemix extension	Conclusion
0000	00000	0000	0000000	00

Distribution of REE (top) and stochastic RSE versus empirical RSE (bottom) - JM LMEM-TTE and JM LMEM-CR

- Empirical RSE
- ★ Mean distribution of the stochastic RSE

Introduction	Covid-19 case study	Methodological assessment	saemix extension	Conclusion
0000	00000	0000	000000	00

Distribution of REE (top) and stochastic RSE versus empirical RSE (bottom) - JM NLMEM-TTE and JM NLMEM-CR

- Empirical RSE
- ★ Mean distribution of the stochastic RSE

Introduction	Covid-19 case study	Methodological assessment	saemix extension	Conclusion ● ○

COVID-19 case study

- Developments of a multivariate joint model to predict the death of patients hospitalized for SARS-CoV-2 infection and a strategy to select among various biomarkers
- Evolution of neutrophils, pH and CRP are predictive of the death/discharge of patients
- Identify biomarkers in other emergent diseases

Introduction	Covid-19 case study	Methodological assessment	saemix extension	Conclusion
0000	00000	0000	0000000	•0

COVID-19 case study

- Developments of a multivariate joint model to predict the death of patients hospitalized for SARS-CoV-2 infection and a strategy to select among various biomarkers
- Evolution of neutrophils, pH and CRP are predictive of the death/discharge of patients
- Identify biomarkers in other emergent diseases

Methodological assessment

- Monolix software (version 2018R2) provides unbiased and accurate estimates of such complex model parameters
- The backward strategy yields good performances

Introduction	Covid-19 case study	Methodological assessment	saemix extension	Conclusion
0000	00000	0000	000000	•0

COVID-19 case study

- Developments of a multivariate joint model to predict the death of patients hospitalized for SARS-CoV-2 infection and a strategy to select among various biomarkers
- Evolution of neutrophils, pH and CRP are predictive of the death/discharge of patients
- Identify biomarkers in other emergent diseases

Methodological assessment

- Monolix software (version 2018R2) provides unbiased and accurate estimates of such complex model parameters
- The backward strategy yields good performances

Limitations

- Limited number of biomarkers included in the multivariate analysis (computational limit)
- Backward strategy usually outperformed by penalized regression methods¹⁸ (LASSO penalization)

CPU time spent to estimate a joint model involving a given number of biomarkers

39

Introduction	Covid-19 case study	Methodological assessment	saemix extension	Conclusion
0000	00000	0000	000000	$\bigcirc \bigcirc$

saemix extension

- Extension of the R package *saemix* to the case of joint models
- Good properties for parameter and standard errors estimation
- Flexible tool in parametric joint model framework
- Users define the likelihood of the model (very specific joint models can be considered)

Perspectives

- Need to evaluate for multiple longitudinal biomarkers
- Need to develop goodness of fit tools in the package

Functions and examples available on Github: https://github.com/saemixdevelopment/saemixextension/tree/master/joint

PAGE 2023 – Lewis Sheiner Student Session

Acknowledgements

Pr Jean-François Timsit The Outcomerea network

Pr Xavier Lescure Dr Nathan Peiffer-Smadja Dr Simon Gressens Dr Alexandre Lahens Dr Agathe Bounhiol Dr Bérénice Souhail

Thank you for your attention !

