We stand now at the turning

—point between two eras.
Behind us is a past to which
We can never return ...

Arthur C. Clarke
Exploration of Space (1952)
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Talk Overview
s Why population analysis?
m Asking new, different questions

m The roles of theory and software

m Tension between innovation/stagnation
m Pitfalls and user considerations
m Opportunities for future developments




Why Population Analysis?

+

m |t is widely recognized as an expedient
methodology to estimate both trends and
variability in clinical and preclinical response

m |t has been immediately accompanied by
software since the early days of its
theoretical development (NONMEM)

m Very widely used and appreciated

m [hese are the usual answers — but Is there
more to it?




Individual and Population
Information Content

# of subjects

available
# of data

per subject

Many

Few

Many

Both individual

and population

Information are
robust

Individual
Information is
most robust

Population
Information is
most robust

Neither individual

nor population
information are
robust




Modeling Philosophies

= Few subjects = Many subjects
= Rich data m Sparse data
® |ndividual models = Population models

L




The Obvious Approach

25 = Subject  Clearance Volume

1 0.18 19.72
N 2 0.08 15.13
d 2 3 0.15 13.77
CED 4 0.13 17.13
~ 5 0.19 19.10
- 6 0.23 19.13
O L5 7 0.16 22.21
E 8 0.21 15.06
S 1 _ 9 0.22 17.22
o
c 10 0.27 14.01
Q
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0
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Data: cadralazine pharmacokinetics, from Wakefield, Racine-Poon et al,
Applied Statistics 43,No 1, pp201-221,1994



The Population Approach

2.5 7

24 N\
Clearance ~ N (0.182, 30%
Volume ~ N (17.24, 16%)
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Data: cadralazine pharmacokinetics, from Wakefield, Racine-Poon et al,
Applied Statistics 43,No 1, pp201-221,1994



Hierarchical Population Variability

s(t,0) = D e (CVity Cland V ~ N(0, o)

Between-individual
(BSV)

\4

y = s(t,0,0) e ~ N(0, o)
| Residual unknown (RUV)

|
l

y =s(t,0,0) + ¢

m Simultaneous quantification of variability
sources and their underlying statistics




A SWOT Analysis
of the Population Approach

m Strengths
= Increasingly used and accepted

m \Weaknesses

= Underlying theory not widely appreciated
m Opportunities

= Rapidly widening areas of application

m [hreats
= Lack of innovation




User Challenges

The consequences of assumptions and model
building are still poorly understood

Model definition is often cumbersome and not
very intuitive (elements of art and science)

Model selection is in its infancy (more later)

Novel methods (Bayesian) did not yet have the
iImpact one would have expected

The user needs to be trained on unintended

conseguences of common assumptions. For
example




What Are the Real Advantages of
Population Analysis?

m For parameter typical values (THETAS),
naive pooling Is often adequate and may
result in unbiased estimates

m \What can be more accurately quantified

are the variances (the OMEGA
parameters — this has been shown already
iIn Beal and Sheiner’s original papers)

m However, this key characteristic of
population analysis is often misunderstood




A Key Application:
Individualized Drug Dosing

2
CEPM Concentration

o  (mM)

12 24

McDonald et al. e {riefis),

Metabolism-based cyclophosphamide dosing for hematopoietic cell transplant.
Clin Pharmacol Ther. 2005 Sep;78(3):298-308.




Why Variances?

m Basically, to simulate and find covariates

m It can be said that the entire mixed effects
modeling analysis Is an effort fo estimate
random effects variability in presence of
sparse data at the individual level

s Random effects estimates allow to
correlate individual parameters with
covariates and ultimately select a model

m \What about covariances?




Example: Theophylline Datase
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Cmax Simulations (N=1000)

m Full Covariance m Diagonal Covariance
= Median 7.34, SD 1.20 = Median 7.20, SD 2.69
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Profile Simulations (N=1000)

m Full Covariance m Diagonal Covariance
= Median 7.34, SD 1.20 = Median 7.20, SD 2.69
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The Role of Covariances

( Vaf:m: COV[nrnz]j (Var[m] 0 j
) = ) =
0 Var[nz]

Cov[n,,n,] Var[n,]

m Covariances (whether positive or negative)
contribute to decreasing the variation in the
simulations by generating correlated variates

m Simulations done in absence of covariance
elements are bound to overestimate variation

m Butifitis so. when was the last time you saw a

population analysis where a full covariance was
estimated?




An Alternative: Correlations

1.0 |
CORRELATION = ( Py ﬂz]j
p[nl’n2] 10

m [he correlation matrix, together with the

variance amounts, specifies completely the
variation in the parameters

m |t may be an alternative parameterization to the
covariance matrix for mixed-effects modeling

m |t also has the advantage of having no units

(while the covariance matrix is harder to
iInterpret)




But;: How Can These Parameters
Be Reliably Quantified?

m [here are serious challenges in estimating
reliably higher-order variation parameters

m \We can do a little example to demonstrate

It with reference to a covariance matrix

= WWe will generate a bivariate Gaussian and
we will try and estimate its parameters by
sample calculations with varying sample
size Ns - -

1.00)  (1.00 0.50
— ,(D:
“71.00/” (050 2.00




Mean Estimates — Ns=10

Radar plot of 100 replicates




Mean Estimates — Ns=100

Radar plot of 100 replicates




Variability Estimates — Ns=10

1.00 0.50
0.50 2.00

Radar plot of 100 replicates




Variability Estimates — Ns=100

Radar plot of 100 replicates




Which Measurements?

PK Parameter 1




Which Measurements?

Expected Value (THETA)

PK Parameter 1




Which Measurements?

Expected Value (THETA)

\ariability (OMEGA diagonal)

PK Parameter 1




Which Measurements?
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Improving Covariance Estimation
18 -

; m C-peptide kinetics
! = N = 14 subjects
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Population Models

m 14 subjects m 14 subjects

m Population model with = Population model with

full random effects diagonal random
covariance effects covariance

= 4 THETASs = 4 THETASs

= 4 OMEGAS = 8 OMEGAS
= 1 SIGMA = 1 SIGMA

= O parameters m 13 parameters




Role of Starting Values

FULL BSV (Minimum SPK Objective Function: 18.73706)
THETA(1) 2.44 (3)
THETA(2) 1.51 (5)
THETA(3) -1.54 (3)

THETA(4) -3.63 (1)
DIAGONAL BSV (Minimum SPK Objective Function: 23.5369)
THETA(1) 242 (2)

THETA(2) 1.49 (4)
THETA(3) -1.54 (3)
THETA@4) -3.64 (1)




Importance of
Good Starting Values

m Diagonal BSV Covariance
0.0483 (29)

0.0472 (29)

0.0191(42)

0.0054 (99)

m Full BSV Covariance (seeded with STS)

'0.0483 (28)

0.0239 (55) 0.0148 (53)

0.0442 (34) 0.0142(62) —0.0051(117)

0.0226 (28)

0.0092 (44) |

0.0025 (169)
0.0052 (93) |




Estimate Reliability

= \While nonlinear mixed effects models
work well for noisy and sparse data, they
will not estimate everything reliably

m Some key parameters may be out of reach
of this methodology, even with extremely
large data sefts

m Solutions (Bayesian?) may have to
employ novel techniques to detect weak
signals and/or uncertain estimates




Proposed Model Diagnostic:
Monte Carlo Likelihood

= The “true” marginal
likelihood can be
evaluated at and near a
parameter estimate,

£ Model Design Agent Data Plot

Likelihood Yersus Parameter

however obfained

This enables us to
compare the relative
performance of methods
that optimize different
approximations to the
marginal likelihood

pooyax Foq aaneliay

Fized Effect Parameter alpha-1

http://www.rfpk.washington.edu
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Post-Optimality Check

(Cadralazine Data, One-Compartment CL,V Model)
m First Order OF: m Expected Hessian OF:

= —43.9216 = —39.5094

= Grid Likelihood: = Grid Likelihood:
= —17.824+0.621 = —41.089£0.748

£ Model Design Agent Data Plot 4. Model Design Agent Data Plot
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Post-Optimality Check

(Cadralazine Data, One-Compartment CL,V Model)
m First Order OF: m Expected Hessian OF:

= —43.9216 = —39.5094

= Grid Likelihood: = Grid Likelihood:
= —17.824+0.621 = —41.089£0.748
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Post-Optimality Check

(Cadralazine Data, One-Compartment CL,V Model)
m Expected Hessian OF:

m First Order OF:
m 43.9216

s Grid Likelihood:
= —17.824+0.621
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Post-Optimality Check

(Cadralazine Data, One-Compartment CL,V Model)

m First Order OF:
m 43.9216

s Grid Likelihood:
= —17.824+0.621

m Expected Hessian OF:

= —39.5094

= Grid Likelihood:
= —41.089%0.748
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Post-Optimality Check

(Cadralazine Data, One-Compartment CL,V Model)
m Expected Hessian OF:

m First Order OF:
m 43.9216

s Grid Likelihood:
= —17.824+0.621

= —39.5094

= Grid Likelihood:
= —41.089%0.748
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The Future: Hybrid Methods?

= Ultimate purpose: Model selection

m Example: optimization theory

= Global and local optimization methods
m Global (stochastic): provide global optimum
m Local (deterministic): speed and precision

= Lately: hybrid approaches (best of both)
= Hybrid methods in population analysis
= Global searches and local minimizations

= Approximate likelihood methods
= Exact diagnostics (likelihood value, gradient and Hessian)




How Can the Population Approach
Be Improved Upon?
m Improve user understanding

= Provide more guidance to the community
m Be wary of “cookie-cutter” approaches

m Clarify the consequences of assumptions
m Help users diagnose method failure

m Exploit advances in computer sciences

m Improve upon and develop new software
m |[n a word, /nnovate...




What Is Innovation?

m [here are challenges in defining
innovation in the context of a modeling
and simulation package

s [heory and methodology?

= Already solidly developed in the 70-80s
m User interface and diagnostics?

= Have not changed in a long time

= New areas of application?
= Do not constitute innovation per se




Judging Innovation

= National Institutes of Health review criteria
= Significance
= Approach
= [nnovation
= Investigators
= Environment

m Proposing innovative endeavors is at the
root of modern US biomedical research

http://www.niaid.nih.gov/ncn/grants/write/write_c1.htm



http://www.niaid.nih.gov/ncn/grants/write/write_c1.htm

Example Open Question:
Model Selection

m Conditioning inference on a specific model

m Stepwise approaches

= Addition-deletion, Leave one out, AIC
stepwise selection

= Novel approaches

= Genetic algorithm (Bies et al., JPKPD 2006
33: 195-221)

m Latest approaches
= \What model selection?




Model Uncertainty

m Model selection implies conditioning on a
single model, the besft model by some [set
of] criteria

m [he user runs the risk to ignore model
uncertainty

m Inferences based on this inappropriate
conditioning are falsely optimistic, e.g.
confidence intervals are narrower




Bayesian Model Melding

A <*
m o ~ the quantities of interest

m D ~ the data
m M ~ the model space

p(e|D) =D p(a | M,,D)p(M, | D)

ke
Hoeting et al. Statistical Science 1999, Vol. 14, No. 4, 382-417




Posterior Model Probability

m o ~ the quantities of interest
m D ~ the data
m M ~ the model space

p(M, | D) =

p(D | M, )p(M,)
> p(D | M,)p(M,)

ke M
= Probability of each model given the data

Hoeting et al. Statistical Science 1999, Vol. 14, No. 4, 382-417




What Could It Look Like

Indometh Subject 5 Indometh Subject 5

Model Likelihood = 14.7% 71 | Model Likelihood = 85.3% 1
Model BIC = 58.1% Model BIC =41.9% 1

S5%time

e 2,
c(t)=Ae" +A,e™




Difficulties

m [he required integrals can be difficult to
compute or approximate

m Specification of a prior distribution on M is
challenging: choosing the model class is
still a fundamental scientific task

s [he number of elements in M can be
enormous, rendering the necessary
computations infeasible. However...

Hoeting et al. Statistical Science 1999, Vol. 14, No. 4, 382-417




Evolution of Computer Power/ Cost
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http://jeffsutherland.org/objwld98/future.html,
see also http://en.wikipedia.org/wiki/Million_instructions_per_second



http://jeffsutherland.org/objwld98/future.html,
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Our Own Approach:
Web Service Ubiquitous Computing

My SPK users

L

IPCop Firewall

Switched Gigabit LAN

dbserver
I

clustered MySQL nodes in future
increase fault tolerance

cspk
computational cluster
1 node [/ 2 Processors

— R

computational cluster of HPEL36p blade servers in future

Courtesy Andrew Ernst

http://www.rfpk.washington.edu



What's Next?




Strengths

m Population analysis is responsive to some
key questions that are being asked today:

= /n vivo pharmacology is essential for drug
discovery and development

= Microdialysis and imaging facilitate /n vivo
data collection

= [Pharmaco]genomics development accelerate
the demand for integration strategies and
applications

Preusch PC. Integrative and organ systems pharmacology: a new initiative
from the national institute of general medical sciences. Mol Interv. 2004
Apr;4(2):72-3.




Weaknesses

m Academic infrastructure is inadequate to
meet training demand

m [he success enjoyed by molecular and
cellular reductionism has come at the
expense of integrative disciplines

m [he cost of /n vivo and preclinical research
has increased

= New training paradigms are needed

Preusch PC. Integrative and organ systems pharmacology: a new initiative from the
national institute of general medical sciences. Mol Interv. 2004 Apr;4(2):72-3.




Opportunities

s Requirements/ingredients:
= Statistics
= Engineering (differential equations)
= Simulation
= Data display and synthesis
= (Pharmaco)kinetics

m [he marketplace of ideas is now global

s Pharmacometricians may come from non-
traditional disciplines (bioengineering)




Threats

“In engineering, the scarcity
of geniuses is compensated
by a formal language that

successfully unites many 400000,

350000+

efforts. In biology, we use e —

several arguments to 2500001

200000+

convince ourselves that P

problems that require 100000

O us
B China
B India

calculus can be solved with 50008-
arithmetic if one tries hard Four-year Engineering
enough and does another Graduates, 2004

series of experiments.”
Y. Lazebnik, in Cancer Cell. 2002
Sep;2(3):179-82

Graduate data from Business Week Online December 13, 2005

http://businessweek.com/smallbiz/content/dec2005/sb20051212_623922.htm



http://businessweek.com/smallbiz/content/dec2005/sb20051212_623922.htm

To be productive, scientists need to keep their
eye on the ball, on the problem, which Is
understanding the subject matter beltter or
leaching students betfter.

Then everything else falls out; they become
successful as a researcher, or successful as a

leacher, and get the rewards. But they should not
Keep the rewards in mind as the reason for It.

(ATN) Clinical Trials: Asking the Right
Questions - Interview with Lewis Sheiner,
MD. AIDS Treatment News #142, Jan 7, 1992

John S. James
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