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Objectives

Remifentanil is a synthetic opioid with ultrafast elim-

ination. Its pharmacokinetics after a one-minute in-

fusion in children (age range 5 days - 17 years) have

been described by Kinder Ross et al. using model-

independent analysis [1]. The first objective of the

present study was to obtain a compartmental model of

remifentanil pharmacokinetics with the possible inclu-

sion of covariates age and weight.

The Lasso has been suggested as a method to find the

covariate coefficients [2, 3, 4]. Interindividual variabili-

ties of the structural pharmacokinetic parameters with

possibly a smaller number of random effects can be de-

scribed by a (not necessarily square) strength matrix

transforming the random effects [5]. The covariate and

strength matrix coefficients are likely to be interdepen-

dent. Therefore, the second objective of this study was

to explore the ability of the Lasso to simultaneously find

optimal covariate and variance-covariance coefficients.

Methods

The remifentanil concentration data of study [1] were

kindly provided by GlaxoSmithKline. Because of the

fast elimination, concentrations were below the lower

limit of quantitation within 30 minutes; 196 samples

were available in 36 children. Two-compartment mod-

els were fit to the data using NONMEM (FOCEI, SIGDIG-

ITS=4); each structural parameter θi in [V1 k10 k12 k21]
T

was written as

θij = θpop,i · exp(βT
iC + ηij), (1)

where j, θpop, η, β, and C denote individuals, popu-

lation values, random effects, and vectors of covariate

coefficients and covariates, respectively. Age (plus 280

days) and weight were log-transformed and normalized

(zero mean and unit variance), denoted by Ã and W̃ ,

respectively. Because age and weight are highly corre-

lated (W̃ was well predicted by Ã), W̃ and W̃ − Ã were

incorporated as covariates.

A standard model was identified by first finding a di-

agonal (co)variance matrix Ω of the random effects

and subsequently finding covariate coefficients signif-

icantly different from zero via backward elimination.

Akaike’s information-theoretic criterion (AIC) was used

for model discrimination [6].

The Lasso was implemented by the minimization of a

penalized likelihood (PL), given by

PL = -2LL(θpop, β, γ,Λ, σ
2)+ λ

∑

k

|αk|, (2)

where α denotes the parameters that are subjected to

model selection: the larger λ, the more αk will be zero.

LL denotes log-likelihood, σ 2 interindividual variability,

and strength matrixΛwas incorporated by substituting

(in eq. (1)):

η = Λ(η′ + γC) with var(η′l) = 1 (l = 1, · · · ,4). (3)

Coefficients γ allow for the incorporation of covariates

via Λ, which could be efficient. The elements of Λ are

not identifiable without the penalty term. There were

a total of 32 coefficients α: 16 for covariates and 16

for Λ. At a certain λ, the coefficients different from

zero (threshold 0.0001) were identified; subsequently,

maximum likelihood estimates of those coefficients and

the structural parameters were obtained (the “hybrid”

method [7]) and AIC computed. Using a grid search (λ

was varied between 0.1 and 100 in 300 increments) the

value of λ was located that identified the best model in

terms of AIC.

Methods (continued)

Simulations were performed to assess the influence of

the covariates and random effects (posterior predictive

check [8]) on the pharmacokinetic profile.

Results

The standard model consisted of a diagonal matrix Ω

with non-zero elements for V1 and k10; four covariate

coefficients were different from zero. The AIC of this

model was 395.2.

The optimal model obtained via the Lasso consisted of

six coefficients of the strength matrix using two random

effects and six covariate coefficients (all γ̂ = 0). The AIC

of this model was 390.2. This model was found at 10

of the 300 evaluated values of λ. 161 NONMEM runs

were successful; 139 ended with rounding errors. AIC

as a function of λ displayed multiple local minima, and

the number of coefficients as a function of λ was not

monotonically decreasing (see figure 1 below).
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Figure 1: AIC (upper panel) and number of coeffi-

cients (lower panel) as a function of λ (see eq. (2)).

The cross hairs indicate the optimal value of λ, the

corresponding AIC and number of coefficients.

Parameter estimates (SE) of the optimal model were: V̂1

= 1.59 (0.13), k̂10 = 0.574 (0.055), k̂12 = 0.375 (0.045), and

k̂21 = 0.187 (0.014). Covariate coefficients estimates β̂W̃

were, for the standard and optimal model respectively:
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Simulated concentrations from the optimal model, after

administration of a dose relative to weight, were mono-

tonically increasing with age; this was not so for sim-

ulations from the standard model: it (most probably

erroneously) displayed lowest concentrations at about

1 year of age.

A full (co)variance matrix of interindividual variabilities

η of the structural parameters can be constructed by

calculating Ω = ΛΛT, yielding
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The first two elements of the diagonal Ω of the stan-

dard model were 0.0477 and 0.0462; the remaining

were zero.

Results (continued)

Prediction intervals obtained from the optimal model

were smaller than those from the standard model, ex-

cept during a few minutes after infusion, and when ex-

trapolating after the study period of 30 minutes (see

figure 2 below). This can be explained by the relatively

large covariance between k10 and k12 incorporated in

the optimal model. At the end of the one-minute in-

fusion, the prediction interval from the optimal model

was 14.0 – 55.6 ng/ml; with covariates incorporated it

reduced to 17.3 – 46.5 ng/ml.
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Figure 2: Medians and 95% prediction intervals from

the standard model (red) and optimal model (green).

The plus signs denote the measured concentrations

(LLOQ ≈ 0.5 ng/ml).

Conclusions

With respect to the standard approach, the Lasso pro-

vided a better (in terms of AIC) description of the

present data; it identified a full variance-covariance

matrix Ω with less random effects than structural pa-

rameters, and the better characterization of the “un-

explained” interindividual variability resulted in im-

proved estimation of the covariate coefficients.

While an exhaustive search of all combinations of 0-

fixed and free coefficients is often not feasible, both the

methods of forward/backward selection and the Lasso

are not guaranteed to find the best model. The (non-

continuous) function AIC(λ) displayed multiple local

minima, which requires the model to be evaluated at

many values of λ. Alternative decompositions of Ω,

such as an eigenvalue-eigenvector decomposition (see

e.g. [9]) might reduce the complexity of AIC(λ).

In the presence of a large number of parameters, the

penalty term in eq. (2) has a stabilizing effect on NON-

MEM’s minimization procedure, but it often fails to con-

verge, because at present no recipe exists for eliminat-

ing coefficients αk close to zero.

References

[1] A Kinder Ross, P J Davis, G deL. Dear, B Ginsberg, F X McGowan, R D Stiller,

L Graham Henson, C Huffman, and K T Muir. Pharmacokinetics of remifen-

tanil in anesthetized pediatric patients undergoing elective surgery or diag-

nostic procedures. Anesth Analg, 93:1393–401, 2001.

[2] R Tibshirani. Regression shrinkage and selection via the Lasso. J R Statist

Soc, B 58:267–88, 1996.

[3] J Ribbing, J Nyberg, and E N Jonsson. The LASSO: A novel method for predic-

tive covariate modelling of population pharmacokinetics/pharmacodynam-

ics. Abstract 713 of PAGE meeting (http://www.page-meeting.org), 2005.

[4] J Ribbing, J Nyberg, E O Caster, and E N Jonsson. The LASSO: A novel method

for predictive covariate model building in nonlinear mixed effects models.

Abstract 936 of PAGE meeting (http://www.page-meeting.org), 2006.

[5] E Olofsen and A Dahan. Population pharmacokinetics/pharmacodynamics

of anesthetics. AAPS Journal, 7, 2005. Article 39 (http://www.aapsj.org).

[6] K P Burnham and D R Anderson. Model selection and multimodel inference,

2nd ed. Springer, New York, 2002.

[7] B Efron, T Hastie, I Johnstone, and R Tibshirani. Least angle regression. Ann

Statist, 32:407–99, 2004.

[8] Y Yano, S L Beal, and L B Sheiner. Evaluating pharmacokinetic/pharmaco-

dynamic models using the posterior predictive check. J Pharmacokin Phar-

macodyn, 28:171–192, 2001.

[9] J C Pinheiro and D M Bates. Mixed-effects models in S and S-PLUS. Springer,

New York, 2000.


